Asteroid Mining Methods

Brad R. Blair
Mining Engineer, Mineral Economist
Space Studies Institute

Leslie S. Gertsch
Deputy Director, Rock Mechanics and Explosives Research Center
Missouri University of Science and Technology

Presented at the SSI Space Manufacturing 14 Conference, NASA Ames Research Center, October 29-31, 2010
Overview

• What is **Mining**?
• Who is the **Customer**?
• How to **Mine Asteroids**?
• Preliminary **Requirements and Constraints** (mining vs. civil engineering of space objects)
• **Mining** and **Planetary Defense** – natural allies
• **Conclusions**
Mining Defined

• Definition of **mining**
 – The extraction of *valuable minerals*, other geological materials, or any non-renewable resource

• Definition of **ore**
 – Any material that can be mined for a *net benefit*

• Mining is an **economic activity**
Asteroid Customer Profiles

• Classified by commodity type (and limited by asteroid classification)
 – PGMs for terrestrial markets
 – Volatiles for propellant, life support
 – Metals for tanks, structures, construction, etc.
 – Silicates for ceramic composites
 – Hydrocarbons for plastics, propellant, food, etc.

• Classified by consumer type
 – Planetary defense apps (a.k.a. Civil Engineering)
 – Human space exploration & military uses of asteroid materials
 – Construction materials for G.K. O’Neil space colonies
 – Feedstock for Orbiting Shipyards
 – Settlement needs: fuel, food, water, housing, entertainment, etc.

sustainable space settlement duplicates most terrestrial activities
Preliminary Requirements Analysis

- Mining
 - Fragmentation
 - Moving / hauling
 - Separation
 - Melting
 - Containment
 - Processing

- Planetary Defense
 - Fragmentation
 - Moving / hauling
 - Containment
 - Separation

Note level of commonality between mining and planetary defense

Also note that this list is notional - more work is needed to capture a complete set of systems requirements and constraints
First-order Constraints

• Astrodynamics
 – Manifolds vs. Hohmann transfers
 – Earth-Moon vs. Earth-Sun Lagrange points destination

• Environmental conditions
 – Very low gravity, variable gravity vector
 – High vacuum
 – Hard radiation
 – Thermal cycling
 – Available sunlight & diurnal cycle

• Launch systems (payload mass & volume)
• Available energy (power sources)
• Maintenance & Repair (service life)
• Communication delays
• Other system constraints will likely be identified as asteroid exploration and development advances…
Asteroid Mining Process Steps

• Mine development and site preparation
 – Anchor to the NEO and attach tether
 – NEO motion control
 • partial or complete de-spin and de-wobble
 – Emplace body/fragment restraint system
 – Construct operations platform system
 – Emplace processing system
 – Emplace auxiliary and support equipment

• Extraction/modification operations
 – Mining
 – Beneficiation and Processing
 – Transport

• Orbit modification (transport)
 – Main body
 – Fragments
Process steps, cont’d

- Principles of terrestrial mining include
 - Max productivity + revenues
 - Min costs + need for reclamation
 - Actions that lower risk are typical
 - Low maintenance / complexity technology is often preferred over higher productivity (perception of longer service life)

- Mine design process
 - Planning and sequencing of unit operations in time and 3D space
 - Extract the mineral of interest at the maximum net benefit (total benefits minus costs)
 - The capabilities required to make the mining method work are the first-order determinants
 - Mining methods are refined to the second and third orders by the constraints imposed by the technology choices made
Developing Mining Methods for Asteroids

- Types of mining methods:
 - Classified by fragmentation energy storage
 - Self-supporting
 - Artificially supported
 - Caving
 - Classified by access
 - Surface
 - Underground
 - Classified otherwise
 - Spin-assisted
 - Others?

- Mining method selection
 - Market (output) controls
 - Demand rate
 - Location
 - Geologic (input) controls

What to produce? Who’s buying it?

The answers determine the mining method
Asteroid mining methods

- Notional asteroid mining methods proposed in the literature can be abstracted into various categories:
 - Bag & Boil => volatile extraction
 - Magnetic Rake => collect high grade ore
 - Divide & Deliver => take a smaller piece home
 - New Moon => put into earth orbit
 - Hot Knife => cut up a comet core with nuclear heat
 - Inside-out => remake it in your own image
 - Mosquito => remove the good stuff from under the shell
 - Laser torch => divide & conquer
 - Etc.

- Operational experience will determine which methods work (all of the above are theoretical at best)

- Note: There is a strong dependence between mining method and ore type / geomechanical properties…
Unit Operations

• The concept of “unit operations” is used in the mining industry to describe elements in the process that connects a pristine mineral occurrence to a deliverable commodity.

• Elements of mining Unit Operations include:
 – Resource Assessment – Determines what is available, where it is, what form it is in, and how it can best be extracted.
 – Resource Extraction – Provides raw materials from the local environment by removing them, concentrating them, and preparing them for further processing, manufacturing, or direct use.
 – Resource Acquisition – Separates and removes the target raw material -- gas, liquid, and/or solid -- from its original location to Resource Beneficiation.
 – Resource Beneficiation – Converts the raw material into a form suitable for direct use, manufacturing, or further processing.
 – Site Management – Comprises supplemental capabilities needed for...
Capability analysis

• Several technologies usually can be applied to achieve the same capability

• Drilling example (all create access to rock at depth)
 – mechanical excavation
 • down-the-hole hammer drilling
 • top-hammer drilling
 – chemical drilling
 – laser drilling
 – nuclear drilling
 – gnomes with picks and shovels…
Current Mining Capabilities

• Some **in-space capabilities** have already been demonstrated:
 – Scooping of regolith samples on the Moon and Mars.
 – Coring & drilling of regolith samples on the Moon.
 – Grinding and analysis of rock samples on the Moon and Mars.
 – Mars atmosphere capture and separation
 – Cryo-coolers demonstrated on satellites for long duration (Mars conditions).

• Present capabilities of **terrestrial resource extraction** include:
 – Semi-automated drilling/boring, fragmentation, excavation, and transportation of rock, both underground and on the surface.
 – Semi-automated pre-processing of gases, liquids, and solids into forms suitable for further processing, manufacturing, or direct use.
 – Production rates from a few liters/day to 200,000+ tonnes/day.
 – Successful operations:
 • from 4,600 m elevation to 3,800 m depth in the crust, and on the sea bottom;
 • in locations accessible only when the ground freezes, when it thaws, or
Required Asteroid Mining Capabilities

- Resource Assessment
 - Prospecting
 - Delineation
 - Development
- Resource Acquisition
 - Underground Liquids and Gases
 - Regolith
 - Rock
 - Mixed Materials
 - Excavated Openings as Product
 - Waste Materials
- Resource Beneficiation
 - Change of Phase
 - Particle Size Change
 - Separation
 - Internal Materials Handling
- Site Management
 - Site Planning
 - Dust Control
 - Anchoring
 - Ground Stability Control
 - Transportation and Storage
 - Monitoring
 - Auxiliary Operations
 - Waste Management
 - Site Reclamation
Asteroid Mining Gaps and Risks

• Gaps:
 – Products and target materials – better definition required
 – Extraction method depends on detailed resource information
 – Extraction and beneficiation also depend on detailed product specifications
 – Current data useful only for prospecting – better resolution required
 – Unknown mass/mission constraints – precise architecture required
 – Lunar and martian granular materials behavior poorly understood
 – Effects of lunar and martian environments on equipment technologies
 – Required capabilities are common to all environments
 – Only the technologies needed to achieve these capabilities vary

• Risks:
 – Prospecting uncertainty
 – Economic uncertainty (no current customers exist)
 – Systems reliability and costs
 – Effects asteroidal environmental conditions
 – Political and legal uncertain (e.g., property rights)
 – Terrestrial experience in resource extraction is broad and deep, but translating
Planetary Defense Synergies

• Flood control analogy
 – Dams are built by USACE to avert floods
 – Power-generation and recreational facilities created by the impoundments provide benefits
 – Example of converting a hazard into a resource

• Asteroid mining could simultaneously de-threaten a PHA orbit while providing resources for space exploration
 – Public / private partnerships could leverage government resources with private capital
 – Partnership could extend limited liability to the private party and return valuable civil engineering data (dynamics of moving an asteroid)
 – Could help initiate a ‘space gold rush’
Mining for Planetary Defense

- Example asteroids classified:

<table>
<thead>
<tr>
<th>Group 0</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wild2</td>
</tr>
<tr>
<td>Group 1</td>
<td></td>
<td>Itokawa</td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td>Eros</td>
</tr>
<tr>
<td>Group 3a</td>
<td></td>
<td>1986 DA</td>
</tr>
<tr>
<td>Group 3b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Controlled fragmentation process →
 - explosives emplacement needs R&D
 - resource extraction possible concurrently but is not the main focus
Physical Classification of Asteroids for Mining & Planetary Defense

• Size Axis:
 – Class 1. Requires only one blast of a few to several hundred charges. A single human-robotic team is needed for blast design and construction.
 – Class 2. Requires between two and 20 simply layered blasts. One to several teams are needed, depending on the mitigation speed required.
 – Class 3. Requires more than 20 blasts, with significant complexity, including multiple layers of blasts. Many human-robotic teams needed.

• Composition Axis:
 – Group 0. Ice composites – very weak, containing ices with or without organic compounds.
 – Group 1. Friable rock – similar to Group 0, but with no volatile components. Also weak.
 – Group 2. Hard rock – strong and brittle, the most similar to materials encountered in terrestrial mining and excavation practice.
 – Group 3. Metallic:
 • 3a. Massive metal – may be ductile.
 • 3b. Rock-metal composites – would fracture mainly at rock-metal interfaces.
Conclusions

• Partner planetary defense with asteroid ISRU
 – Begin a comprehensive, ongoing missions program to characterize PHAs:
 • Measure properties pertinent to mining and defense
 – destruction and deflection can be designed for simultaneously
 • Return samples for detailed analysis
 • Build and maintain robust database of PHA traits
 – follow and improve on the USGS model with modern information technology

• A partnership between planetary defense and asteroid mining would be enabling for both
 – Certain PHAs may be excellent resource choices
 – Many common knowledge requirements exist
 – Many common technologies and capabilities apply
 – Detailed engineering analysis and design is warranted
 • Knowledge should include mining, aerospace and astrodynamics
 • Trade studies should include detailed analysis of technical requirements and constraints as well as economic forecasting
Backup Charts
References Cited

Technology Concepts for Some Asteroid Mining Capabilities

• Fragmentation
 – Nuclear explosives
 – Cycling fatigue
 – Impact

• Drilling and excavation
 – Mechanical systems
 • Heat build up on cutting tools is limiting factor
 • Reaction mass is a major issue
 – Lasers
 – Kinetic drilling
 – Chemical drilling

• Beneficiation and processing
 – Synthetic biology
 – Electrostatic / electrodynamic separation systems

Note: for more detail see 1997 paper “Near-Earth Resources” in reference list
The lists that follow are derived from lunar ISRU technology roadmapping and needs modification to incorporate unique asteroid environmental effects – see Sanders et. al. reference.
Technologies Needed

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capability Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping Technologies</td>
<td></td>
</tr>
<tr>
<td>Remote Geophysical Survey Technologies</td>
<td>Prospecting and Delineation, Site Planning, Monitoring</td>
</tr>
<tr>
<td>Human & Robotic Transportation Technologies</td>
<td></td>
</tr>
<tr>
<td>Pit and Trench Excavation Technologies</td>
<td>all Resource Assessment capabilities; Transportation and Storage</td>
</tr>
<tr>
<td>Drilling Technologies</td>
<td>all Resource Assessment capabilities; Waste Management, Site Reclamation</td>
</tr>
<tr>
<td>In Situ Geophysical Survey Technologies</td>
<td>all Resource Assessment capabilities; Underground Liquids and Gases, Regolith, and Rock Resource Acquisition; Monitoring and Site Reclamation</td>
</tr>
<tr>
<td>Field Sampling Technologies</td>
<td>Prospecting, Delineation, Site Planning, Monitoring</td>
</tr>
<tr>
<td>Sample Analysis Technologies</td>
<td>Prospecting and Delineation, all Resource Beneficiation capabilities, Site Planning and Monitoring</td>
</tr>
<tr>
<td>Dust Mitigation/ Control Technologies</td>
<td>Development, all Resource Acquisition capabilities, all Beneficiation capabilities, and Dust Control</td>
</tr>
<tr>
<td>Atmospheric Extraction Methods</td>
<td>Development, Atmospheric Gases Resource Acquisition</td>
</tr>
<tr>
<td>Borehole Liquid & Gas Extraction Methods</td>
<td>Development; Underground Liquids and Gases Resource Acquisition</td>
</tr>
<tr>
<td>Surface Extraction (Mining) Methods</td>
<td></td>
</tr>
<tr>
<td>Underground Extraction (Mining) Methods</td>
<td></td>
</tr>
<tr>
<td>In Situ Extraction Methods</td>
<td>Development, Regolith and Rock Resource Acquisition</td>
</tr>
<tr>
<td>Tunnel/Shaft Excavation Technologies</td>
<td></td>
</tr>
<tr>
<td>Gas Collection Technologies</td>
<td></td>
</tr>
<tr>
<td>Granular materials performance models</td>
<td>Development; Regolith and Rock Resource Acquisition, and Excavated Openings as Product; Beneficiation Separation and Internal Materials Handling; Site Management, Anchoring, Ground Stability Control, Site Reclamation</td>
</tr>
<tr>
<td>Process Monitoring Technologies</td>
<td>all Resource Acquisition and Beneficiation capabilities</td>
</tr>
<tr>
<td>Continuous Materials Handling Technologies</td>
<td>all Resource Acquisition capabilities, and Beneficiation Internal Materials Handling</td>
</tr>
<tr>
<td>Cyclic Materials Handling Technologies</td>
<td></td>
</tr>
<tr>
<td>Liquid and Gas Containment Technologies</td>
<td>Atmospheric Gases, Underground Liquids and Gases Resource Acquisition, Internal Materials Handling</td>
</tr>
<tr>
<td>Regolith & Rock Fragmentation Technologies</td>
<td>Regolith and Rock Resource Acquisition, and Excavated Openings as Product</td>
</tr>
<tr>
<td>Regolith & Rock Transportation Technologies</td>
<td></td>
</tr>
<tr>
<td>Regolith & Rock Excavation Technologies</td>
<td></td>
</tr>
<tr>
<td>Regolith & Rock Transport Technologies</td>
<td></td>
</tr>
<tr>
<td>Gas-Liquid Phase Change Technologies</td>
<td></td>
</tr>
<tr>
<td>Solid-Gas Phase Change Technologies</td>
<td></td>
</tr>
<tr>
<td>Solid-Liquid Phase Change Technologies</td>
<td></td>
</tr>
<tr>
<td>Solid-Plasma Phase Change Technologies</td>
<td></td>
</tr>
<tr>
<td>Solids Communion Technologies</td>
<td></td>
</tr>
<tr>
<td>Solids Agglomeration Technologies</td>
<td></td>
</tr>
<tr>
<td>Gaseous Separation Technologies</td>
<td></td>
</tr>
<tr>
<td>Granular Solids Chemical Separation Technologies</td>
<td></td>
</tr>
<tr>
<td>Granular Solids Physical Separation Technologies</td>
<td></td>
</tr>
<tr>
<td>Liquid Separation Technologies</td>
<td></td>
</tr>
<tr>
<td>Ground Stability Control Technologies</td>
<td>Ground Stability Control</td>
</tr>
<tr>
<td>Ground Stability Monitoring</td>
<td>Ground Stability Control, Monitoring</td>
</tr>
<tr>
<td>Soil & Rock Anchoring Technologies</td>
<td>Anchoring</td>
</tr>
</tbody>
</table>