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Background

• Over 60 years ago, H. B. G. Casimir and D. Polder [1, 2] 
explained the retarded van der Waals force in terms of the 
zero-point energy of a quantized field.

• Regarding the pressure on moving mirrors due to the dynamic 
Casimir effect, Neto and colleagues, [3-7], took a perturbative 
approach on the assumption that the mirror motion is << than 
the wavelengths of interest. (causality issues?)

• Maclay and Forward, [8], used this work to investigate the 
Dynamic Casimir effect as a propulsive mechanism. 
– Due to the high frequencies of mirror motion needed, they concluded 

that owing to the limited strength of materials, the maximum 
amplitudes must be at the nanometer scale.

• Recent progress (including other work presented at this 
workshop!) has provided experimental support

• This presentation describes an idea to attain large amplitudes, 
and develops analysis to support manufacture of a test item.  
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First Order Perturbation 

Very small motion, no wavelength dependence
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 consider the impulse response obtained via the inverse transform of :  
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A moving “mirror” is a front of reflectivity – Mechanical motion 

unnecessary!

• The Casimir effect is due to the motion of the boundary conditions constraining the 
free field.

• The advent of transparent electrochromic semiconductors used for thin film 
applications, or Chiral Nematic Liquid Crystals [9-14] suggests the possibility of 

achieving large motions of reflective surfaces with no mechanically moving parts.

• This paper proposes the use of an epitaxial assembly of switchable laminae. To 
evaluate the forces, we must consider large motion

• An objective is to formulate specs for manufacture of a test item

Without voltage input, a lamina is a dielectric

With input, the lamina becomes a conductor (or vice-versa)

Inputs can be switched at high speed

Z

Voltage 

inputReflective Lamina
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Progression of reflectivity as the laminas are successively pulsed.
The blue-shaded boundary indicates the continuous motion of the front having a particular value of 

reflectance.
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Paddle-Wheel Motion
q() monotonically increasing, q(0)=0
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Transflection Characteristics* 

   

 

Assume the reflectivity coefficient is given by:

                                     , 0,  or 1
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*INVESTIGATION OF LIQUID CRYSTAL SWITCHABLE 

MIRROR OPTICAL CHARACTERISTICS FOR SOLAR ENERGY 

P. Lemarchand; J.Doran; B.Norton 

School of Physics, Dublin Energy Lab, Focas Institute, Dublin Institute 

of Technology, Dublin, Sep 15, 2017.
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Dynamic Casimir forces due to reflective boundary conditions 

undergoing large motions - Formulation

• Use the Heisenberg picture: The initial state is fixed (at zero 
temp, in the vacuum state) and the operators evolve in time. 
The Heisenberg operator equations-of-motion are, in this case, 
Maxwell’s equations for the field operators.

• Use the continuous Fock space representation with 
commutation relations:
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Dynamic Casimir forces due to reflective boundary conditions 

undergoing large motions - Formulation
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The Situation Considered
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Dynamic Casimir forces due to reflective boundary conditions 

undergoing large motions – Formulation
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Dynamic Casimir forces due to reflective boundary conditions 

undergoing large motions - Formulation

 Then the force on the field, is ....•

 Integrate the Lorentz force operator  per unit volume over the volume (below), apply the 

 divergence theorem and let  and 0R 
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Dynamic Casimir forces due to reflective boundary conditions 

undergoing large motions - Formulation
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Averaging over the initial state - Example
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Dynamic Casimir forces due to reflective boundary conditions 

undergoing large motions - Formulation

 By symmetry, there is only a z-component of force.

 Since No x or y dependence of 

 Take the quantum average (w.r.t. the initial state) and obtain the average force 
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General Character of the Mode Functions
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Average Casimir Force: Dimensional Analysis
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A 1-D Approximation
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A 1-D Approximation – Solution of the scalar wave equation
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A 1-D Approximation

• represents the evolution of the vector field operator from the initial 
plane wave configuration in the vacuum state having wave vector k. 

• For each half space, there is an incident wave with wave vector and a 
reflected wave, also planar.

• Assume that (1) the total amplitude of motion is much larger than a 
wavelength, (2) during the time required for the passage of one wavelength, 
the relative change in the surface velocity is very small. 
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A 1-D Approximation
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A Class of Accelerating Motions
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A Class of Accelerating Motions
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The 3-D Problem – The Eikonal Approximation
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The 3-D Problem – The Eikonal Approximation
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The 3-D Problem – Lower and Upper Bounds
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Average Force for the Case of Periodic Scans
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(a) Cyclic waveform of the reflective surface position; (b) Force on the momentum 

exchange device.
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Average Force for the Case of Periodic Scans
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Example: Periodic Motion with Power-Law Waveforms

 14 16 7 Plasma frquency 10  to 10 , 2 10 0.3UHz Hz k m •   

Figure 6. Force per unit area as a function of the maximum waveform velocity, integer powers 30



Example: Periodic Motion with Power-Law Waveforms

 14 16 7 Plasma frquency 10  to 10 , 2 10 0.3UHz Hz k m •   

Figure 7. Force per unit area as a function of the maximum waveform velocity, 

fractional powers 31
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More Complex Operation: The Piston
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More Complex Operation: Resonator
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Concluding Remarks

• This paper re-examines the dynamic Casimir effect as a possible mechanism for 
propulsion and seeks large amplitude motion.

• An epitaxial stack of transparent/reflective laminae is proposed, wherein voltage 
switching creates large motion of a reflective surface without moving parts.

• Since previous analysis of the propulsive effect was restricted to motions much 
smaller than the wavelengths of importance, it is necessary to derive more general 
expressions. 

• A class of accelerating, power-law, motions was examined and the forces computed.

• For motions of the reflective surface that are much larger than the wavelength range 
of significance, the approach taken here yields an eikonal approximation that may 
simplify calculations in more complicated cases. 

• Restrictions:
– Detailed dielectric function models not used – merely a wavelength range within which 

switching is possible

– As for previous workers, the treatment is semi-quantum in that the epitaxial stack is modeled 
as a set of prescribed boundary conditions on the field operators. 

– Use of two reflective surfaces (cavities) may enhance the effect by the 
finesse of the cavity

• Despite these restrictions, if reasonable switching frequencies are possible, the 
propulsive forces may be quite significant.
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