Water vs. Rocks Resources for Earth or

Michael F. A'Hearn

30/10/10

Space Mfg 14

Saturday, November 20, 2010

1

Reachable Resources

- NEOs vs. other targets
 - No gravity well to escape with a heavy load, thus no need for a launch vehicle to deliver resources
 - Longer return to Earth than from Moon but less than or comparable to return from Mars & less than from Main Belt Asteroids
 - Can be delivered elsewhere in solar system rather than back to Earth
 - E.g., resources of one type delivered to

An Example

- An Aten (like Apophis), i.e. a<1.0AU
 -q = 0.696, Q = 1.003, MOID = 0.00614, I = 10°
 - $-H = 22.8 \rightarrow diam \sim 50-175m$
- Proposes shared NASA-commercial investment to capture it at Earth and
 - Mine it for valuable materials that commercial enterprises will buy
 - Use it as a rotational mass driver for sending spacecraft from Earth-orbit to Mars (or elsewhere)

What NEOs Are There

- Many different types of rocky asteroids
 Faith Vilas will discuss
- ~15% are low albedo in cometary orbits (a small fraction are known comets – rest are probably dormant comets or possibly extinct comets)
 - E.g., P/Schwassmann-Wachmann 3 is now in >80 pieces, some of which are considered PHAs
- What do we know about the "cometary"

Resources in Cometary NEOs

- Water:
 - 50% of mass (more or less)
 - Where in the body is it?
- Organics:
 - -C:O ~ cosmic abundance
 - ~ $\frac{1}{2}$ in CO, CO₂, CH₃OH, etc (ices)
 - ~1/2 in "CHON" relatively stable organic solids
 - N:O strongly depleted relative to cosmic
- Minerals TBD silicates known but

Ice in Comets

- Ice is on surface!
- But most water is not coming from that ice
- Most ice is below surface by 1-3 thermal skin depths
 - Definitely < 2 m
 - Likely more like 10 cm
 - 5-10 ktons excavated at impact site
- Is distribution heterogeneous?

30/10/10

Space Mfg 14

- Deep Impact approach extracts the resource but not in way one can collect it
- One can return the whole cometary NEO (most are rather small) to where H₂O or other very abundant resource is needed.
- Relatively rare but valuable resources can be extracted & returned without a

Physical Properties for Mining

- Bulk density, THROUGHOUT on average, is ~0.5 g/cc
 - Very porous mix of ice & rock
 - Evidence is conflicting on how well mixed the ice & rock are
- Material strength only upper limits
 - <100 Pa from SL9 at km scales
 - $< 10^4$ Pa from DI at m scales
- Gravity negligible
 - $-V_{esc} \sim 1 1.5 \text{ m/s}$ from Tempel 1 (a big one)
- Thermal conductivity very low

Backup Slides

Funding Issues

- Space Manufacturing or Resource Development implies a commercial enterprise, which means commercial investment
- For NEOs, NASA is also interested in sending humans (at least in this administration's plan for exploration) but NASA's mandate is exploration
- Synergy will allow things to happen faster but neither source will fund it all

What Resources?

- Materials with economic value on Earth

 Implies returning the material to Earth
- Materials needed for operations in space
 - Implies using in space, either at source or elsewhere
- Although these two classes overlap, they are far from identical sets of resources.

Types of NEOs

- Wide variety of types as indicated by remote sensing
 - Remote sensing measures only the very surface layer
 - Remote sensing measures only some materials with characteristic absorption features