



# Electrical Energy Storage using only Lunar Materials

presented to:

Space Manufacturing 14 – Session 5
29-31 October 2010

Dave Dietzler (The Moon Society)
Peter J. Schubert, Ph.D., P.E. (Packer Engineering)

### Permanently-occupied Lunar Base

- POWER
  - Must persist through lunar night (O354 hours)
  - Must be highly-reliable, or redundant
- Base-load options:
  - Nuclear reactor
  - Beamed power from orbiting SPS
- Storage options:
  - Batteries
  - Hydrogen

# Brief History of Batteries

- Count Alessandro Giuseppe Antonio Anastasio Volta
  - Invented the "voltaic pile" in 1800.
  - The term "battery" was coined by Benjamin Franklin in 1748
    - Described an array of charged glass plates
- Gaston Plante: rechargeable battery
  - Same lead-acid battery used in cars today in 1859
- Thomas Edison: alkaline storage battery
  - The top selling battery today! invented in 1901
- A "battery" is a collection of electrochemical "cells" wired
  - together to boost power.
    - Cells inside a 9V battery





# ISRU Battery Fabrication

- Edison Cell
  - Sold until '72
- Electrodes:
  - Iron anode
    - Nickel cathode
- Electrolyte:
  - Potassium hydroxide in water
- Casing
  - Cast basalt, or polymer-lined container

```
Fe + 2OH^- \Leftrightarrow Fe(OH)_2 + 2e^-
```

 $2NiOOH + 2H_2O + 2e^- \Leftrightarrow 2Ni(OH)_2 + 2OH^-$ 

 $2NiOOH + Fe + 2H_2O \Leftrightarrow 2Ni(OH)_2 + Fe(OH)_2$ 

## Electricity Storage Requirements

- Consider 2-person base
  - Average 1.2 kW
  - 100 sq. meters
- Equatorial location
- Horticulture:
  - 20 sq. meters per person
  - 100 W per sq. meter
- Inside 23 °C, outside O-233 °C
  - With burial, outside temp is also 23 °C!



#### Fe and Ni – Method A

- Magnetically harvest fines
- Crack off silicates
  - Centrifugal grinder

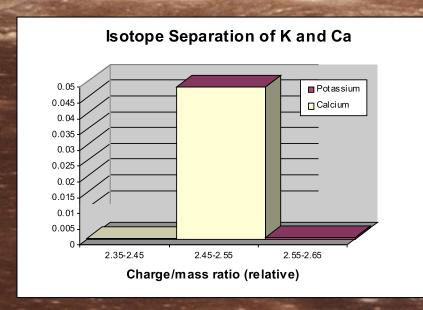


- Mond process selects out Ni
  - At 60 °C  $Ni(s) + 4CO(g) \otimes Ni(CO)_4(g)$
- For further Fe refinement, us Mond process at 180 °C
- Precipitate metals at different T

#### Fe and Ni – Method B

 Separate from plasma by charge-tomass ratio (3 US Patents granted)




- Refractory slag (dolomite):
  - Can be formed into net shapes
  - Use for casting of electrodes
  - Use to build battery vessels

## Potassium Extraction

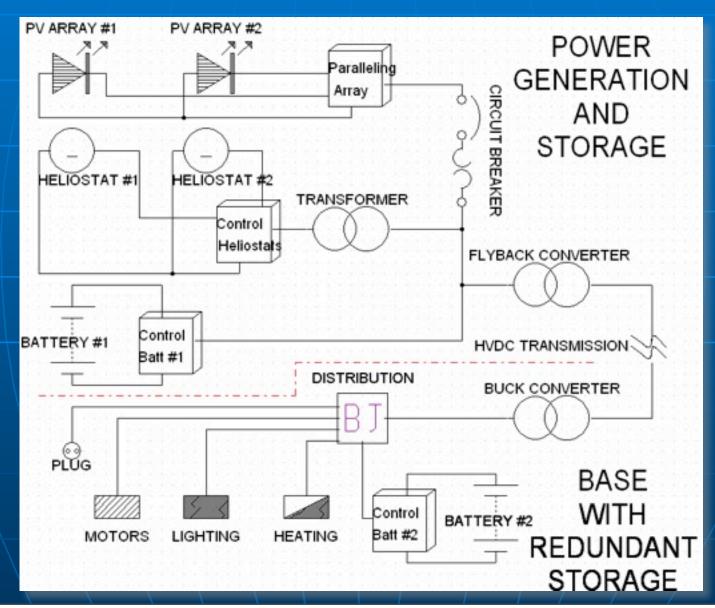
- Vacuum roasting between 900 and 1200 °C releases 30% of K.
- K is in lunar so we know

atmosphere, it is volatile

- Alternate:
  - Isotope extraction
  - Separate by solubility
  - KOH: 110 g/100ml
  - CaOH: 0.17 g/100ml



## Water and Casing


- Water abundant at poles only
  - Subsurface temperatures are low
  - Assume 85% insolation
  - With 2 meter masts, can get to 90%
- Vessels from cast basalt, dolomite, or
  - polymer-lined vessels
    - Need a sealed lid
    - Assume 1 m<sup>3</sup> H<sub>2</sub>O each



# Battery Specifications

- Specific power = 0.04 kWh/kg
- Leakage rate = 30%/month
- Deep cycling limit = 65%
- Electrolyte specific density = 1.4
- Assuming 24 V = 21 cells/battery
- Electrode mass = 0.5 MT/battery
- Heat loss by radiation = 4.6 W/m²

#### Distribution Schematic



## Results – 2-man base 85% sun

| Energy Storage System |                   | Base           | Base Needs    |  |
|-----------------------|-------------------|----------------|---------------|--|
| electrolyte           | 1400 kg           | Baseload       | 1.2 kW        |  |
| Electrodes            | 500 kg            | Energy needed  | 63.72 kWh     |  |
| specific power        | 0.04 kWh/kg       | Width          | 10 m          |  |
| Storage               | 76 kWh/battery    | Breadth        | 10 m          |  |
| discharge             | 1% per day        | height         | 3 m           |  |
| T-background          | 40 K              | Floorspace     | 100 m2        |  |
| T-inside              | 163 K             | Volume         | 300 m3        |  |
| surface area          | 6 m2              | Surface area   | 320 m2        |  |
| heatloss              | -0.04 kW/m2       | T-external     | 40 K          |  |
| nightspan             | 53.1 hours        | heat loss rate | 12.76 kW      |  |
| radiative loss        | -12.71 kWh        | heat loss      | 677.68 kWh    |  |
| self-discharge        | -1.68 kWh         | plant needs    | 100 W/m2      |  |
| deep discharge        | 0.65 fraction     | plant floor    | 50 m2         |  |
| Net storage           | 40.05 kWh/battery | duty cycle     | 0.5 half time |  |
|                       |                   | Plant power    | 2.5 kW        |  |
| Batteries             | 6                 | Plant energy   | 132.75 kWh    |  |
| Redundancy            | 12                | Total energy   | 209.23 kWh    |  |

## Logistics

- Water harvesting assumed
- Iron extraction:
  - 16 batteries/year by isotope separation
    - Also get Si, Al, K, plus dolomite slag
  - 55 batteries/year by magnetic extraction
    - Requires CO for carbonyls
- Factory launch masses:
  - 1.3 MT for isotope separator
  - 0.4 MT for magnet harvester



#### CONCLUSIONS

 Electric energy storage is possible using only lunar materials, plus an earth-launched ISRU factory.

 In one year, we can serve up to 2-3 continuously-occupied, polar-located 2-person lunar bases.