
Building a Vertical Take Off and Landing Pad using *in situ* Materials

Paul E. Hintze, NASA KSC NE-L2 NASA Corrosion Technology Laboratory Paul.E.Hintze@nasa.gov

Why do we need a landing pad?
Other applications
Regolith Stabilization Methods
Demonstrations
Future

Photo-s78_23252

Dust and surface stabilization

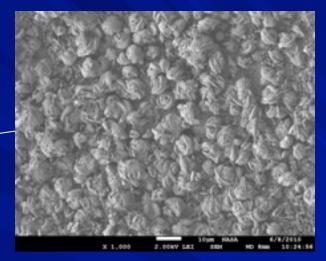
- Dust ejecta during lunar launch/landing can affect visibility, erode nearby coated surfaces and get into mechanical assemblies of in-place infrastructure
- Dust mitigation will be necessary for certain areas of the lunar habitat

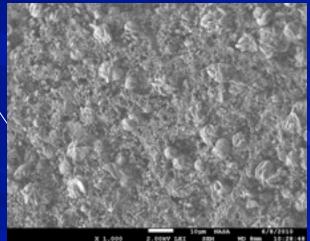
 Surface stabilization be used for roads, launch pads and other dust free areas

John Young, Photo S72_37002

Surveyor III

- Apollo 12 LM landed 155m from the Surveyor III craft
- NASA-SP-284: Analysis of Surveyor 3 material and photographs returned by Apollo 12 – found "sandblasting" with shadows showing that the blast came from the LM




Charles Conrad Jr. and Surveyor III

Surveyor III

Part from lower shroud

Applications

Roads and Landing Pads Dust Free areas for habitation or science

Berm/trench stabilization Habitation structures

Stabilization Methods

 Polymer Composites
 Sintering/melting regolith
 Others...

Technology successfully used in military applications for helicopter pads and roads
 Polymer is sprayed with water as the solvent

Technology required very little development

Rhinosnot.com

Advantages

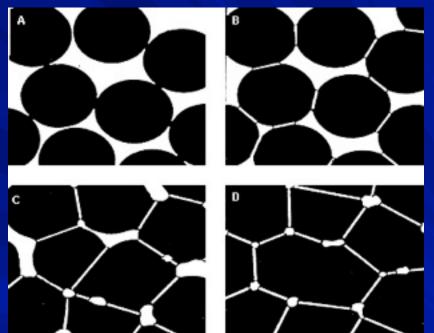
- Ease of use: heat (200 C), UV or ambient curing

 Many commercially available products (solvent free solids or liquids) with different desirable properties: High temperature resistance, abrasion resistance, flexibility

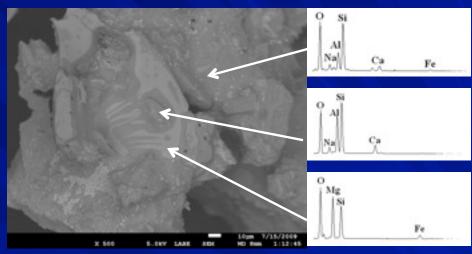
Disadvantages

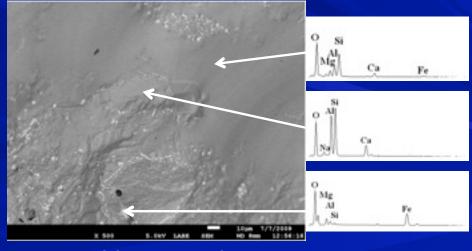
- Mass
- Consumable
- Can be vacuum sensitive

- Evaluated 4 commercially available powders and 1 developed at KSC
 - Abrasion, UV resistance, high temperature resistance
- Demonstrated stabilization in the lab and in the field using our solar concentrator
- Investigated different spreading ratios, mixing ratios and application methods
- Polymers do not begin thermal degradation until 260 – 290 C
- Coverage rates ranged from 0.08 to 0.31 kg/m²


- Adherent Technologies Inc., Albuquerque, NM, has Phase I, II SBIR to develop polymers for spraying and making blocks.
- Identified spray nozzle for vacuum use.
- Made blocks with 5 wt% resin (185 psi) and sprayed resin at a rate of 25 g/m²

Sintering or Melting

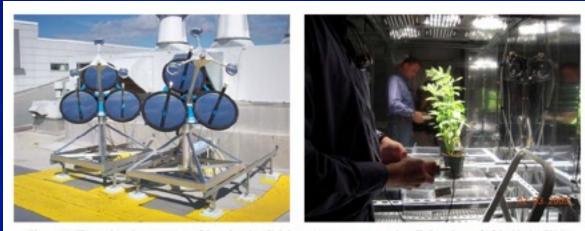

- Sintering is a method for making solid objects from a powder by heating the material (below its melting point) until its particles adhere to each other
- Particle size, density and packing of regolith are ideal for sintering
- Use in situ materials; need heat source


- . Loose powder (start of bond growth).
- B. Initial stage (the pore volume shrinks).
- C. Intermediate stage (grain boundaries form at the contacts).
- D. Final stage (pores become smoother).

Sintering or Melting

One or all phases can melt
 Depending on cooling rate, recooling rate, recover stallization will occur

JSC-1A, 1100 °C


JSC-1A, 1200 °C

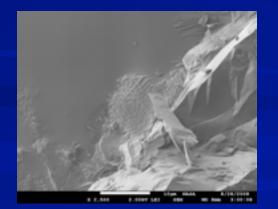
Sunlight gives 1.3 kW/m² of energy

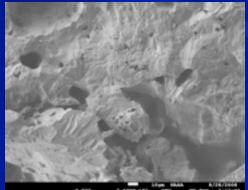
Solar heating used for cooking, water purification, plant growth and other uses

1st generation solar concentrator

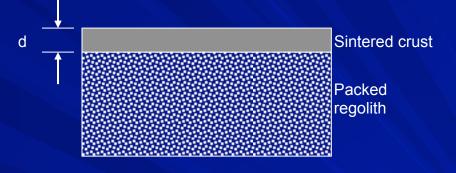
Solar concentrator (PSI Corp) on top of Space Life Sciences Lab at NASA KSC

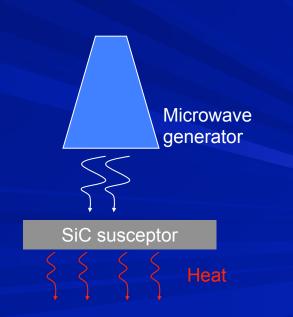
Advantages – No power - Lightweight - Inexpensive Disadvantages - Direct heating only heats the surface - Uneven heating can cause problems Must follow the sun


It would take 27 days to sinter a 100 m² area 2.5 cm deep with a 1m² collector assuming 100% efficiency



- You need good control to sinter, without melting
- Melted areas can be brittle; sintered areas might not have abrasion resistance

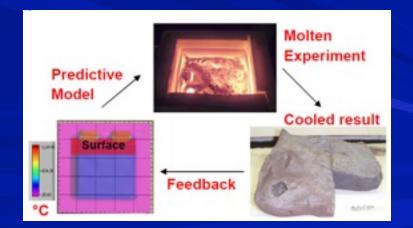



Microwave sintering

- Technology has been proposed for sintering a surface (Taylor et. al.) as well as other heating uses
- Most materials absorb microwave energy to some degree, especially at higher temperatures
- Advantages:
 - Much more efficient than electrical heating
 - Moderate Mass
 - Inexpensive technology
 - Heats the bulk of material
- Disadvantages
 - Power consumption (1 10 kW?)
 - Magnetron requires cooling
 - Thermal runaway can lead to inconsistent results
 - Energy might penetrate deeper than needed

Microwave Sintering

- It would take a 1000W microwave 31 days to sinter a 100m² area to a depth of 2.5 cm assuming 100% efficiency, 8-12 months is more realistic
- Microwaves would penetrate deeper into the surface
- Susceptors can be used to localize heating



Microwave

- Phase I SBIR: Automated Hybrid Microwave Heating for Lunar Surface Solidification, Ceralink Inc. Troy NY
- First demonstration of sintering a lunar simulant (JSC-1A) with microwaves coming from the top only
- Modulus of rupture ranging from 1700 to 3200 psi (ASTM C1161)
- Successfully modeled heating to account for differences in simulants

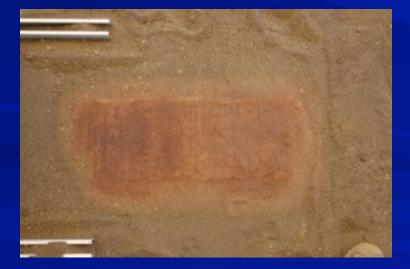
Field Demonstrations

Hawaii field demo
 Thruster Firings at KSC

Mauna Kea, Feb. 2010

 Large Area Surface Sintering System (LASSS)
 Uses resistive heater
 Incorporates layered sintering and temperature feedback

Mounted on NORCAT rover



LASSS

Mauna Kea, Feb. 2010

Able to layer tephra and connect sintered areas
 Strengths from 30 – 240 psi
 Fired thruster on sintered area
 Environmental conditions caused issues

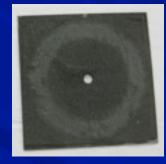
KSC Thruster Firings

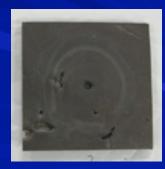
Sintered Tiles
Polymers
Gravel
Textiles

Physical Properties and Lab Testing

Compression strength and modulus of rupture Load strength Abrasion **Resistance** (Taber Abraser) Abrasive blast resistance

Load Bearing Strength




At 0.31kg/m², there would be about 200 microns thickness of polymer if it were not mixed with regolith

Abrasion Resistance

Future Work/Lessons Learned

Identify which methods work best for which applications

Try to find commonalities between methods used for different applications

You always learn something on a field demo

May need to employ multiple methods

Multiple Methods

Acknowledgements

NASA KSC – Phil Metzger - Rob Mueller – Janine Captain - David Smith - Luke Roberson ASRC – Jerry Curran – Teddy Back - Chris Immer

Mike Csonka
Interns

Brittany Griffin
Stephanie Quintana

NASA KSC CDDF
NASA ISRU