

In-Situ Production of Construction Materials by Combustion of Regolith/Aluminum and Regolith/ Magnesium Mixtures

Evgeny Shafirovich, Christopher White, and Francisco Alvarez

Center for Space Exploration Technologies Research Mechanical Engineering Department The University of Texas at El Paso

> Space Manufacturing 14 October 29–31, 2010

Acknowledgment

- Center for Space Exploration
 Technologies Research (cSETR) has been operating at the University of Texas at El Paso (UTEP) since October 1, 2009
- The cSETR is supported by the NASA
 Office of Education (Group 5 University
 Research Centers).
- ISRU is one of research topics studied at cSETR.

In-Situ Production of Materials

- Construction materials for landing/ launching pads, radiation shielding, thermal wadis, etc., could be produced in situ from regolith, using sintering and other high-temperature methods.
- One such method is to apply selfpropagating high-temperature synthesis (SHS), also called combustion synthesis.

Combustion of Regolith Mixtures

- Regolith is mixed with either a pyrotechnic mixture (e.g., Ti + 2B) or a metal (e.g., Al or Mg) powder.
- Upon ignition, mixture exhibits

- Products can be used for construction applications.
- Advantage: small energy consumption

Prior Research

- Martirosyan and Luss (University of Houston) studied combustion in mixtures of lunar regolith simulant with Ti + 2B.
 - The reaction is: $Ti + 2B \rightarrow TiB_2$
 - Regolith is inert
 - Successful ignition of 40 wt% (Ti/2B) / 60 wt% regolith mixtures.

Prior Research

- Faierson et al.

 (Virginia Tech)
 demonstrated
 combustibility of
 regolith/Al
 mixtures.
 - The reaction is between Al and regolith (thermite)

Images: E.J. Faierson, K.V. Logan, B.K.Stewart, M.P. Hunt, Acta Astronautica

Potential Construction Elements

- Bricks
- Tiles
- Ceramic layer on the Moon surface for landing/launching pads and thermal wadis

Research Objectives

- Comparative analysis of different additives to regolith (Al, Mg, Ti/2B) with the goal to minimize the amount of additive that is required for stable combustion
- Determination of the effect of mixture density on the combustion characteristics and product properties
- Determination of the effects of vacuum and reduced gravity
- For disks, determination of the minimum thickness that is required for stable combustion

Approach

- Thermodynamic calculations
- Combustion experiments
- Characterization and testing of the products
- Modeling

Phermodynamic Calculations (Al and Mg)

- THERMO software used to calculate adiabatic flame temperatures and combustion products.
 - Uses minimization of the Gibbs free energy.
 - Database includes approximately 3000 compounds.
 - 8 most abundant minerals were chosen for calculations.
 - Glass composition is assumed to be the same as the remaining mineral content.

Regolith Simulant Composition

Mineral	Formula	wt% (JSC-1A)	wt% (Model System)
Anorthite	CaAl ₂ Si ₂ O ₈	26.48	37.95
Albite	NaAlSi ₃ O ₈	11.35	16.27
Orthoclase (K	KAlSi ₃ O ₈	0.07	0.10
Wollastonite	CaSiO ₃	7.77	11.14
Enstatite	MgSiO ₃	7.38	10.58
Ferrosilite	FeSiO ₃	4.28	6.13
Forsterite	Mg ₂ SiO ₄	9.08	13.02
Fayalite	Fe ₂ SiO ₄	3.36	4.81
Glass		26.67	0
MgFeAl silicate	- X-	3.06	0
Sulphides		0.17	0
Ilmenite	FeTiO ₃	0.11	0
Calcite	CaCO ₃	0.11	0
Magnetite	Fe₃O₄	0.01	0
Quartz	SiO ₂	0.01	0
Others		0.07	0
TOTAL	TIZ	99.98	100.00

Predicted Temperatures

Temperatures for Mg are higher than

Predicted Products

For 23 wt% Al composition:

Formula	Phase	Composition, wt%
$MgAl_2O_4$	Solid	31.81
CaAl ₄ O ₇	Solid	30.24
Si	Solid	14.91
$Ca_2Al_2SiO_7$	Solid	8.58
FeSi	Solid	6.05
Al_2O_3	Solid	4.49
NaAlO ₂	Solid	3.89
K	Gas	0.01
Na	Gas	0.01

Qualitative agreement with experiments conducted at Virginia Tech!

Predicted Products

For 26 wt% Mg composition:

Formula	Phase	Composition, wt%
MgO	Solid	43.61
$MgAl_2O_4$	Solid	17.65
Ca ₃ MgSi ₂ O ₈	Solid	16.04
Si	Solid	10.56
FeSi	Solid	5.82
CaMgSiO ₄	Solid	3.99
Si	Liquid	1.16
Na	Gas	1.03
Mg	Gas	0.10
Na ₂	Gas	0.02
K	Gas	0.01

Thermodynamic Calculations (Ti + 2B)

- The number of possible compounds is too large for THERMO.
- HSC Chemistry 7 includes 25,000 compounds but it cannot determine the adiabatic temperature if the product composition is unknown.
- Solution: use HSC chemistry 7 to determine equilibrium compositions at different temperatures; then use these results to select compounds for THERMO and determine the adiabatic flame temperature.

Predicted Temperatures

Mg is the best additive!

Experimental Setup

- Steel combustion chamber with inserts for pellets and layers
- Igniter: NiCr wire
- Environment:
 - Argon at 1 atm
 - Vacuum

Sample Types

- Pellet
 - diameter 1.3 cm, height 3 cm

- Disk
 - diameter 5-10 cm

Experimental Results

- Pellets compacted from the mixtures of original JSC-1A (mean size 300 µm) with Al or Mg did not ignite.
- Milled JSC-1A (mean size 110-120 µm)
 does not ignite with Al but it ignites with
 Mg.
- For mixtures of milled JSC-1A with Mg, in some runs pulsations were observed while in other runs combustion was steady.

Combustion of Regolith/Mg Mixture

Steady combustion

Pulsating combustion

Combustion of Regolith/Mg Mixture

Steady combustion

Pulsating combustion

Combustion of Regolith/Mg Mixture

Steady combustion

Pulsating combustion

Conclusions

- Thermodynamic calculations of the adiabatic flame temperature and combustion products have been conducted for mixtures of regolith simulant with Al, Mg, and Ti + 2B.
 - At the same wt% addition, Mg additive provides higher temperatures than Al.
 - Much larger amounts of Ti + 2B mixture are required for combustion.
- Combustion of regolith/Mg mixtures has been demonstrated experimentally (steady and pulsating regimes).

Ongoing and Future Work

- Use a planetary ball mill (Fritsch Pulverisette 7) to further decrease the particle size of JSC-1A and determine the minimum amounts of Mg and Al for steady and unsteady combustion regimes.
- Along with pellets, study combustion of disks.
- Study combustion products
 - XRD, SEM, EDS
 - mechanical properties
 - testing by rocket plume at Kennedy Space
 Center