Systems Definition Space Based Power Conversion

Cover 1
Title Page 2
Table of Contents 4
1.0 Introduction and Background 10
1.1 Introduction 10
1.1.1 The Study Effort 10
1.1.2 Contributers 10
1.1.3 Related Efforts 10
1.2 Background 10
1.2.1 The Space Power Concept 10
1.2.2 Auxiliary Systems 11
1.2.3 Energy Overview and the SPS 13
2.0 Programmatics 16
2.1 Dreivation of Satellite Energy System Program Definition 16
2.2 Requirements 18
3.0 Alternative Power Generation Approaches 20
3.1 Concepts Investigated 20
3.2 Solar Thermionic, Direct Radaition Coold (Concpet 1) 20
3.3 Solar Thermionic, Liquid Cooled (Concept 2) 20
3.4 Solar Closed Brayton Cycle (Concept 3) 21
3.5 Solar Thermionic/Brayton Cycle Cascade (Concept 4) 21
3.6 Silicon Photovoltaic (Concept 5) 21
3.7 Gallium Arsenide Photovoltaic (Concept 6) 22
3.8 Nuclear Thermionic (Concept 7) 22
3.9 Nuclear Closed Brayton Cycle (Concept 8) 23
3.10 Power Trnsfer System (Concept 9) 23
3.11 Emphasized Concepts 23
4.0 Subsystems 24
4.1 Materials 24
4.2 Solar Concentrators 25
4.2.1 High Concentration Ratio (Over 1000) 25
4.2.2 Low Concentration Ratio (Under 10) 27
4.3 Structure 27
4.4 Cavity Solar Absorber 28
4.5 Concentrator / Absorber Optimization 29
4.6 Thermionics 29
4.6.1 Background 29
4.6.2 Converter Characteristics 30
4.6.3 Radiator 32
4.6.4 Busbar Design 35
4.6.5 Weight Analysis 37
4.6.6 Conclusions 37
4.7 Solar Cells 38
4.7.1 Requirements 38
4.7.2 Cell Performance Prediction 39
4.7.2.1 Efficiency 39
4.7.2.3 Radiation 41
4.8 Turbomachines and Associted Heat Exchangers 41
4.8.1 Brayton Cycle 41
4.8.2 Brayton Cycle Design Equations 42
4.8.3 Brayton System Parametrics 43
4.8.3.1 Working Fluid Selection 43
4.8.3.2 Parametrics 43
4.9 Nuclear Reactors 45
4.9.1 Necessity for Breeder as SPS Reactor 45
4.9.2 Breeder Reactor Program Concept 45
4.9.2.1 Example Program Concept (Molten Salt Breeder Reactor - MSBR) 46
4.9.3 Reactor Selection 46
References 50
4.10 Radiators 50
4.10.1 Meteoroid Environment 50
4.10.2 Tube/Fin Radiator 52
4.10.2.1 Panel Design Analysis and Modeling 52
4.10.3 Radiator Configuration 56
4.10.4 Radiator System Optimization 59
4.10.5 Occultation Effects 61
4.10.6 Heat Pipe/Fin Radiator 62
4.10.6.1 Panel Design Analysis and Modeling 62
4.10.6.2 Heat Pipe Concept 62
4.10.6.3 Heat Pipe Working Fluids 63
4.10.6.4 Heat Pipe Performance 64
4.10.6.5 Candidate Materials: Heat Pipe/Fin Radiator 64
4.10.6.6 Heat Pipe Radiator Configuration 64
4.10.6.7 Occultation Effects: Heat Pipe/Fin Radiator 65
4.10.6.8 Mass Optimization: Heat Pipe/Fin Radiation For Brayton Systems 65
4.10.7 Radiators For Solar Cells 68
References 69
4.11 Power Distribution 69
4 11.1 The Problem 69
4.11.2 Conductors 69
4.11.3 AC Versus DC Trade 70
5.0 System Optimization and Configuration Description 72
5.1 System Optimization 72
5.1.1 Approach 72
5.1.2 Iteration 72
5.1.3 Alternative Systems 72
5.2 Solar Direct Radiation Cooled Thermionic (Concept 1) 72
5.3 Solar Liquid Cooled Thermionic (Concept 2) 75
5.4 Solar Closed Cycle Brayton (Concept 3) 77
5.5 Thermionic Brayton Cascade (Concept 4) 79
5.6 Solar Silicon Photovoltaic (Concept 5) 79
5.7 Solar Gallium Arsenide Photovoltaic (Concept 6) 82
5.8 Nuclear Thermionic (Concept 7) 83
5.9 Nuclear Closed Brayton Cycle (Concept 8) 84
5.10 Solar Power Transfer (Concept 9) 86
6.0 Cost 88
6.1 Baselined Auxiliary Systems 88
7.0 Comparison of Concepts 94
7.1 Approach 94
7.2 Configuration and Mass Comparison 94
7.3 Environmental Impact 95
7.3.1 Exhaust Emissions 95
7.3.2 Energy Balance 95
7.4 Overview 97
References 97
8.0 SPS Development 98
8.1 Developmental Goals 98
8.2 Recommended Development Plan 98
8.3 Expanded Analysis and Ground Experiments (Part 1) 98
8.4 Shuttle Based Demonstrations (Part 2) 98
8.5 Precursor System Development and Demonstration (Part 3) 99
8.6 Operational System Development & Demonstration (Part 4) 99
List of Illustrations 6
Fig. 1-1. Satellite Power Stations 10
Fig. 1-2. Receiving Antenna 11
Fig. 1-3. Solar Turbomachine Power Satellite Option 12
Fig. 1-4. "Space Freighter" Lands 12
Fig. 1-5. Orbital Construction Facility 13
Fig. 2-1. Electricity/Labor Cost Ratio 16
Fig. 2-2. Growth in U.S. Installed Capacity 16
Fig. 2-3. U.S. Capacity Margin 17
Fig. 2-4. Annual Additions to Installed Capacity 18
Fig. 3-1. Solar Thermionic Direct Radiation Cooled System 21
Fig. 3-2. Solar Thermionic, Liquid-Cooled System 21
Fig. 3-3. Solar Brayton Cycle System 21
Fig. 3-4. Cascaded Solar Thermionic/Brayton Cycle System 21
Fig. 3-5. Silicon Photovoltaic System 22
Fig. 3-6. Gallium Arsenide Photovoltaic System 22
Fig. 3-7. Nuclear Thermionic System 22
Fig. 3-8. Nuclear Thermionic System 23
Fig. 4-1. Material Selection Approach 24
Fig. 4-2. Materia! Technology Trend 25
Fig. 4-3. Faceted Concentrator (Individual Steerable Facets Direct Solar Impages Onto Solar Array or Into Cavity Absorber) 25
Fig. 4-4. Typical Reflective Facet 25
Fig. 4-5. Variables in Solar Concentrator Analysis 25
Fig. 4-6. Solar Concentrator Performance 26
Fig. 4-7. Influences on Concentrator Efficiency (Solar Off-Axis Locations and Light Spread From Reflector Facets) 26
Fig. 4-8. Reflectivity Performance of Plastic Films 26
Fig. 4-9. Compound Parabolic Concentrator 27
Fig. 4-10. Derivation of Ideal Beam Dimensions 28
Fig 4-11. Typical Power Satellite Conducting Primary Structure (Example, Size Varies) 28
Fig. 4-12. Cavity Solar Absorber 28
Fig. 4-13. Model for Concentrator/Absorber Optimization 29
Fig. 4-14. Characteristics of Mass-Optimized Concentrator/Absorber Combinations 29
Fig. 4-15. Thermionic Efficiency Versus Emitter Temperature 30
Fig. 4-16. Molybdenum Work Function Plot 30
Fig. 4-17. Thermionic Diode Characteristics as a Function of Emitter Temperature for a Molybdenum Emitter and a Nickel (Molybdenum Coated) Collector 31
Fig. 4-18. Increase in Efficiency and Output Voltage with Decreasing Plasma Drop for Constant I of 1290 A 31
Fig. 4-19. Heat Rejection as a Function of Converter Efficiency (Modified From Ref. 8) 32
Fig. 4-20. Thermal Conductivity Data 33
Fig. 4-21. SPS Thermionic Converter Design 33
Fig. 4-22. Isometric Cutaway of SPS Thermionic Converter 33
Fig. 4-23 Multifoil Thermal Insulation 34
Fig. 4-24. Thermal Conductivity Comparison 35
Fig. 4-25. Multifoil Thermal Insulation Temperature Profile for Brush-Coated ThO2 on Tungsten 35
Fig. 4-26. Electrical Resistivity of Metals 36
Fig. 4-27 SPS Electrical Pane! Design 36
Fig. 4-28. Solar Cell Performance Predictions 39
Fig. 4-29. Fundamental Limitations May Enforce Performance Plateau 39
Fig. 4-32. Closed Brayton Cycle Schematic 41
Fig 4-33. Cycle State Diagram 42
Fig. 4-34. Xenon-Helium Mixture Results in Lighter and Smaller Turbomachine 43
Fig. 4-35. Specific Mass Variation With Temperature (Example Influence Coefficient) 43
Fig. 4-36. United States Energy Resources 45
Fig. 4-37. Breeder Reactor Program Concept 46
Fig. 4-38. Particle Bed Reactor Concept 47
Fig. 4-39. Sporadic and Stream Average TotalMeteroid Environment (Omnidirectional) 51
Fig. 4-40. Meteoroid Motion 51
Fig. 4-41. Resultant Interaction With Object in Earth's Orbit 51
Fig. 4-42. SPS Radiators Can be Preferentially Oriented 51
Fig. 4-43. Flux Seen by Radiator 51
Fig. 4-44. Meteroid Shielding Philosophy 53
Fig. 4-45. Radiator Configurations 53
Fig. 4-46. Minimum Weight Two-Sheet Aluminum Barrier 53
Fig. 4-47. Beta Program Solves Thermal Network Modeling of Radiator Structure 53
Fig. 4-48. Radiator Thermal Mode 54
Fig. 4-49. Baseline Radiators 54
Fig. 4-50. Optimum Radiator Panel Dimensions — Low Temperature Helium Radiator 54
Fig. 4-51. Radiator Heat Rejection Helium Fluid 55
Fig. 4-52. Radiator Pane! Mass Helium Fluid 55
Fig. 4-53. Radiator Mass Distribution (Helium) 55
Fig. 4-54. Use of Liquid Radiator With Brayton Cycle Requires Additional Heat Exchanger 56
Fig. 4-55. Optimum Radiator Panel Dimensions Low Temperature NaK Radiator 56
Fig. 4-56. Radiator Panel Arrangement — Concept No. 1 57
Fig. 4-57. Radiator Panel Arrangement — Concept No. 2 57
Fig. 4-58. Radiator Panel Arrangement — Concept No. 3 57
Fig 4-59. Radiator Configuration Concept 57
Fig. 4-60. Original and New Radiator Configurations 58
Fig. 4-61. Original Panel Arrangement Showing Typical Feeder Path to Center-Fed Headers 58
Fig. 4-62. "Halo" Radiator Configuration 58
Fig. 4-63. Radiator System, Solar Thermionic SPS 58
Fig. 4-64. Liquid Metal (NaK) Loop 59
Fig. 4-65. Stress Versus Creep — Haynes 188 59
Fig. 4-66. Header or Feeder Volume Versus Creep 59
Fig. 4-67. Radiator System Modeling 60
Fig. 4-68. Radiator 61
Fig. 4-69. Effect of Significant Radiator Parameters on Total Mass 61
Fig. 4-70. Effect of Power Level on Radiator System Specific Mass (Optimum LT) 61
Fig. 4-71. Radiator Fluid Temperature During Occulation 62
Fig. 4-72. Radiator Welds Performed in Orbit 62
Fig. 4-73. Heat Pipe Concept 62
Fig. 4-74. Heat Pipe Options 63
Fig. 4-75. Heat Pipe Fluids: Latent Heat of Vaporization 63
Fig. 4-76. Heat Pipe Fluids: Surface Tension 63
Fig. 4-77. Heat Pipe Fluids: Absolute Viscosity 63
Fig. 4-78. Heat Pipe Fluids: Vapor Pressure 63
Fig. 4-79. Heat Pipe Fluids: Heat Transport Capability and Temperature Range 64
Fig. 4-80. Heat Rejection Area and Capability is Limited by Heat Pipe Length Unless Pumped Manifolds are Used 65
Fig. 4-81. Radiator: Pumped Manifolds/Heat Pipe/ Fin 65
Fig. 4-82. Heat Pipe/Fin Radiator Panel Concept 65
Fig. 4-83. Occultation Effects: Heat Pipe/Fin Radiatormasses for fluid inlet temperatures 66
Fig. 4-84. Radiator Mass Comparison: Heat Pipe (Constant Section Manifolds) and Tube/ Fin (Tapered Manifolds) 67
Fig. 4-85. Effect of Manifold Taper on Radiator Mass 67
Fig. 4-86. Heat Pipe Radiator With Tapered Manifolds 67
Fig. 4-87. Radiator Mass Comparison: Heat Pipe and Tube/Fin (Both With Tapered Manifolds) 68
Fig. 4-88. Radiators for Solar Cells 68
Fig. 4-89. Microwave Power Transmission Efficiency Chain 69
Fig. 4-90. Moving Large D.C. Currents 70
Fig. 4-91. A.C. Versus D.C. Distribution 70
Fig. 5-1. Diode Panel (Heat Pipe Side) 73
Fig 5.2. Power Converter Panel (For Diode Panels) 73
Fig. 5-3. Busbar Circuit 73
Fig. 5-4. Panel Masses 74
Fig. 5-5. Cavity Absorber is Formed From Panels 74
Fig. 5-6. Thermionic SPS Module 74
Fig. 5-7. Thermionic SPS Configuration 74
Fig. 5-8. Reduction of Interelectrode Busbar Mass 75
Fig. 5-9. Diode/Radiator Interface 75
Fig. 5-10. Radiator Concept 76
Fig. 5-11. Liquid Cooled Thermionics ISAIAH Model 76
Fig. 5-12. Brayton Module 77
Fig. 5-13. Module Quantity Optimization 78
Fig. 5-14. Brayton SPS Configuration 78
Fig. 5-15. Optimization Model, Photovoltaic SPS 80
Fig. 5-16. Derivation at Optimum Concentration Ratios 80
Fig. 5-17. Cost and Mass Minima are not Coincident 81
Fig. 5-18. Silicon SPS Efficiency Chain 81
Fig. 5-19. Approaches to SPS Maintenance 81
Fig. 5-20. Silicon SPS End-of-Life Configuration 81
Fig. 5-21. Main Frame, Silicon SPS 81
Fig. 5-22. Silicon SPS Power Module 82
Figure 5-23. Photovoltaic Array 82
Fig. 5-24. Compound Parabolic Concentrators 83
Fig. 5-25. GaAs SPS Configuration 83
Fig. 5-26. MSBR Nuclear Thermionic System 83
Fig. 5-27. Nuclear Brayton Cycle SPS 84
Fig. 5-28. Reactor Module 84
Fig. 5-29. RPBR Approaches 85
Fig. 5-30. Simplified RPBR Configuration 85
Fig. 5-31. Cone Angle of Solar Image is Equal to the Cone Angle to the Sun 86
Fig. 5-32. Mirror Attitude Changes Around Orbit 86
Fig. 5-33. Combined Mirror and Solar Output 86
Fig. 5-34. Shows the Low Latitude Target Area for the Power Relay System 87
Fig. 6-1. Heavy Lift Launch Vehicle 88
Fig. 6-2. Chemical OTV Maintenance Freighter 88
Fig. 6-3. Self Power Requirements 88
Fig. 6-4. Thermal Engine SPS Assembly Stat 88
Fig. 6-5. Thermionic SPS Assembly Station 88
Fig. 6-6. MSBR (Nuclear) SPS Assembly Station 89
Fig. 6-7. Photovoltaic SPS Main Frame Assembly Station 89
Fig. 6-8. Photovoltaic SPS Module Assembly Station 89
Fig. 6-9. SPS Transmitter Assembly Station 89
Fig. 6-10. SPS Geosynchronous Orbit Assembly Station 89
Fig. 6-11. Silicon Photovoltaic SPS Program 89
Fig. 6-12. Gallium Arsenide Photovoltaic SPS Program 90
Fig. 6-13. Brayton Thermal Engine SPS Program 90
Fig. 6-14. Thermionic SPS Program 91
Fig. 6-15. SPS Program Costs 93
Fig. 6-16. Required Busbar Costs 93
Fig. 7-1. Concepts to Same Scale (10 GW Ground Output) 94
Fig. 7-2. Mass Comparison of Concepts 94
Fig. 7-3. System Life Cycle Costs 94
Fig. 7-4. Required Busbar Charges 95

RkJQdWJsaXNoZXIy MTU5NjU0Mg==