... On the Modification of the Upper Atmosphere by SPS..

ABSTRACT This report presents results of a workshop held in June, 1979, to identify research needs for evaluating environmental impacts on the upper atmosphere (here defined as greater than 70 km) due to Satellite Power System (SPS) transport, i.e., propulsion and reentry. The substantial injections of water and hydrogen therefrom may lead to global-scale regions of reduced ionization in the ionospheric F-Region that may have a serious impact on worldwide HF radio communications; and the resulting possibly significant increases in mesospheric humidity and probable cloudiness could affect climate and remote sensing from satellites. The large injections of argon ions of kilovolt energy between low earth orbit and geostationary orbit may alter substantially the trapped radiation environment of the magnetosphere and thus the hazard for personnel and electronic equipment. During the workshop it became clear that the highest priority for SPS environmental assessment goes to theoretical studies needed before acceptable atmospheric experiments can be designed. Problems to be addressed include: the extent, magnitude, and variability of the predicted depletion in F- region ionization together with descriptions of water and hydrogen injections into the atmosphere characteristic of SPS vehicles and flight profiles; the long-term variations in mesospheric humidity and cloudiness with and without SPS operations; and the description of condensation and evaporation processes of water exhausted from high-altitude rockets in order to predict mesospheric contrail formation and dissipation. Furthermore, in considering argon ion rocket transport to geosynchronous orbit, the stopping and lifetime of the argon ion beams and consequent changes in the radiation belts, especially as they affect spacecraft, should also be addressed.

RkJQdWJsaXNoZXIy MTU5NjU0Mg==