1992 Eurospace Powersat FInal Report

Cover 1
Title Page 3
Contents 5
Executive Summary 9
The Economics of Powersats 9
Prospects for Powersat Demonstration Programme• 12
Acknowledgement of Support 15
In Europe 15
In the United States 16
Part I: The Economics of Powersats 17
Introduction: Space Power - Understanding The Problem 19
2. Finding the Fist Application 25
2.1 The Economics of Powersats 25
2.2 The Niche Market Approach 28
3. Example 1: Communications Satellites 30
4. Example 2: Space Stations 37
4.1 Meeting a Recurring Operational Need 37
4.1.1 Example of Space Station Freedom 38
Station-Keeping Propellant 38
Battery life 40
4.1.2 Columbus Free-Flyer 41
4.2 Two Powersat Options for Space Stations 43
4.2.1 Option 1: The Co-Orbiting Microwave Solution 43
Reference Concept Configuration 43
Advantages and Disadvantages of the Microwave Solution 49
Understanding the Drag Problem 51
Alternatives to Solar Arrays 54
Summary 56
4.2.2 Option 2: The High Orbit Laser Solution 57
Overall Configuration 57
Advantages and Disadvantages of the Laser Solution 59
Summary 62
5. Economic Analysis of Powersats For Space Stations 63
5.1 Analysis Approach 63
5.2 Launch Costs 63
5.3 Economic Analysis Technique 65
5.4 Assumptions 66
5.5 Results 67
5.6 Discussion & Summary 67
6. Principle Conclusions 70
7. References And Footnotes for Part 1 72
Part II: Prospecs for a Powersat Demonstration Programme 75
1. Introduction: Pragmatic Rationale For A Powersat Demonstrator 77
2. Minimising Costs & Schedule 79
3. Overview of Launch Opportunities 84
3.1 Ariane 4/ASAP 86
3.2 Columbus Precursor Missions 88
3.2.1 Eureca -3 Mission Opportunities 88
3.2.2 Spacelab E-l 93
3.3 Space Shuttle Launch of Small Payloads 98
3.3.1 Get-Away Special Canister (GAS Can) 98
3.3.2 GAS Complex Autonomous Pay load (CAP) 100
3.3.3 Hitchhikers G & M 102
3.4 Other Possible Launch Opportunities 106
3.4.1 Astro-SPAS 106
3.4.2 SPARTAN 111
3.4.3 CIS Launch Opportunities 112
3.4.4 Small Launch Vehicles 114
3.4.5 MASER & MAXUS Sounding Rockets 114
3.6 Space Access Discussion 114
4. Derivation of Powersat Demonstrator Requirements 121
4.1 Technical Issues: Laser or Microwave? 121
Laser Discussion 122
Microwave Discussion 123
4.2 Operational Considerations 124
4.3 Technology Test-Bed 127
4.4 Space-to-Ground Demonstrations 128
4.5 Guideline Requirements 129
4.5.1 Initial Demonstrator 129
Transmitted Power 129
Transmission Distance 129
Pointing Precision 131
Experiment Time Period 131
Reception Efficiencies 132
Safety 132
4.5.2 Advanced Demonstrator 132
5. Reference Concepts for a European Powersat Demonsrator Programme 134
5.1 The ASAP Reference Concept 134
5.1.1Concept Evolution 134
5.1.2 Concept Overview 135
5.1.3 Specific Technology Issues & Rationale 144
Tether Discussion. 144
Rectenna Discussion 148
Reflector Discussion 152
Service Module Discussion 155
Microwave Source Discussion 157
Beam Pointing 159
Power Module 159
5.1.4. Preliminary Mass Budget 163
5.1.5 Programmatics & Schedule 163
5.1.6. Costs 167
5.1.7. Laser Discussion 167
5.2 The Astro-SPAS Reference Concept 170
5.2.1 Concept Evolution 170
5.2.2. Microwave Advanced Demonstrator 170
5.2.3 Laser Advanced Demonstrator 176
5.2.4 Programmatics & Schedule Discussion 180
6. Alternative Options for the Initial Demonstrator 181
6.1 Columbus Precursor Missions 181
6.1.1 Eureca-3 181
6.1.2 Spacelab E-l 184
6.2 Space Shuttle Launch of Small Payloads 185
6.2.1 Use of GAS CAP for a Shuttle-Based Experiment (Option 1) 185
Discussion & Potential Problems 188
6.2.2 Deployment of Transmitter & Receiver from a GAS CAP (Option 2) 191
6.2.3 Use of Hitchhiker G & M (Option 3) 191
Hitchhiker G 191
Hitchhiker M 193
6.3 MASER & MAXUS Sounding Rockets 193
7. International Cooperation Overview 197
7.1 With the United States of America 197
7.2 With Japan 203
7.3 With the Commonwealth of Independent States 207
8. Principle Conclusions & Reommendations for a Powersat Demonstrator Programme 213
8.1 Conclusions 213
8.2 Recommendations 217
References and Footnotes for Part II 222
Appendix: Industry Contributions & Comments 225
Introduction 227
Contribution of Thomson Tubes Electroniques 229
1. Scope 231
2. Reference 231
3. Preliminary Remarks 231
4. Methodology of Investigations 231
5. Basic Assumptions 232
6. Discussions ofthe Options 233
6.1Ariane 4 Options 233
6.2 EURECA Option 235
6.3 Space Shuttle Options 236
6.4 Spacelab E-1 Precursor Mission. 237
6.5 SPAS & Spartan Platforms 238
6.6 Ariane 5 Demonstration Flights 238
6.7 MASER / MAXUS Sounding Rockets 238
Slides 239
Contribution of AEA Technology Culham Laboratory 247
Notes 249
Position Statement on Powersat Demonstrator Options 251
Contribution of Oerlikon-Contraves, Space Division 255
PIC Rectenna for Power Beaming Demonstration 259
1.PIC-Rectenna Size 259
References 263
Slides 265
Contribution of ETCA 277
Very Great number of mission opportunities 279
Transparency to other pay loads 279
Very low cost 280
Slides 281
Contribution of SAFT 293
1 Scope 295
2 Driving Parameters 295
3 General considerations on use of High Energy Density Power Sources 295
4 Discussion with regard to the Powersat demonstrator 297
4.1 Launch system used 298
4.2 Demonstrator mission 298
4.3 Saft's recommended solution 299
Slides 300
Contribution of CNRS 311
Laser Power 313
Contribution of Laserdot 315
Definition d’une premiere experience dans Fespace 317
Slides 322
Contribution of Deutsche Aerospace MBB Space Communications and Propulsion Systems Division 327
Slides 329
Contribution of Deutsche Aerospace MBB-ERNO 333
Slides 335
Contribution of MATRA 341
Report of the Japanese External Trade Organization 345
1 Solar Power Satellite [SPS] R&D and International Cooperation 347
1. Sunshine Project and Solar Power Satellite 347
2. SPS ’91 and International Cooperation 348
2 R&D by Research Organizations 350
The Institute of Space and Astronautical Science [ISAS] 350
Electrotechnical Laboratory [ETL] 354
National Space Development Agency of Japan [NASDA] 356
Central Research Institute of Electric Power Industry [CRIEPI] 357
3 R&D by Private Enterprises 358
Letters from U.S. Organizations 363
Center for Space Power 365
EM & Mv Laboratory at Texas A&M 366
Space Studies Institute 368
ETM (Extraterrestrial Materials, Inc.) 370

RkJQdWJsaXNoZXIy MTU5NjU0Mg==