1
374
1992 Eurospace Powersat FInal Report
Cover
1
Title Page
3
Contents
5
Executive Summary
9
The Economics of Powersats
9
Prospects for Powersat Demonstration Programme•
12
Acknowledgement of Support
15
In Europe
15
In the United States
16
Part I: The Economics of Powersats
17
Introduction: Space Power - Understanding The Problem
19
2. Finding the Fist Application
25
2.1 The Economics of Powersats
25
2.2 The Niche Market Approach
28
3. Example 1: Communications Satellites
30
4. Example 2: Space Stations
37
4.1 Meeting a Recurring Operational Need
37
4.1.1 Example of Space Station Freedom
38
Station-Keeping Propellant
38
Battery life
40
4.1.2 Columbus Free-Flyer
41
4.2 Two Powersat Options for Space Stations
43
4.2.1 Option 1: The Co-Orbiting Microwave Solution
43
Reference Concept Configuration
43
Advantages and Disadvantages of the Microwave Solution
49
Understanding the Drag Problem
51
Alternatives to Solar Arrays
54
Summary
56
4.2.2 Option 2: The High Orbit Laser Solution
57
Overall Configuration
57
Advantages and Disadvantages of the Laser Solution
59
Summary
62
5. Economic Analysis of Powersats For Space Stations
63
5.1 Analysis Approach
63
5.2 Launch Costs
63
5.3 Economic Analysis Technique
65
5.4 Assumptions
66
5.5 Results
67
5.6 Discussion & Summary
67
6. Principle Conclusions
70
7. References And Footnotes for Part 1
72
Part II: Prospecs for a Powersat Demonstration Programme
75
1. Introduction: Pragmatic Rationale For A Powersat Demonstrator
77
2. Minimising Costs & Schedule
79
3. Overview of Launch Opportunities
84
3.1 Ariane 4/ASAP
86
3.2 Columbus Precursor Missions
88
3.2.1 Eureca -3 Mission Opportunities
88
3.2.2 Spacelab E-l
93
3.3 Space Shuttle Launch of Small Payloads
98
3.3.1 Get-Away Special Canister (GAS Can)
98
3.3.2 GAS Complex Autonomous Pay load (CAP)
100
3.3.3 Hitchhikers G & M
102
3.4 Other Possible Launch Opportunities
106
3.4.1 Astro-SPAS
106
3.4.2 SPARTAN
111
3.4.3 CIS Launch Opportunities
112
3.4.4 Small Launch Vehicles
114
3.4.5 MASER & MAXUS Sounding Rockets
114
3.6 Space Access Discussion
114
4. Derivation of Powersat Demonstrator Requirements
121
4.1 Technical Issues: Laser or Microwave?
121
Laser Discussion
122
Microwave Discussion
123
4.2 Operational Considerations
124
4.3 Technology Test-Bed
127
4.4 Space-to-Ground Demonstrations
128
4.5 Guideline Requirements
129
4.5.1 Initial Demonstrator
129
Transmitted Power
129
Transmission Distance
129
Pointing Precision
131
Experiment Time Period
131
Reception Efficiencies
132
Safety
132
4.5.2 Advanced Demonstrator
132
5. Reference Concepts for a European Powersat Demonsrator Programme
134
5.1 The ASAP Reference Concept
134
5.1.1Concept Evolution
134
5.1.2 Concept Overview
135
5.1.3 Specific Technology Issues & Rationale
144
Tether Discussion.
144
Rectenna Discussion
148
Reflector Discussion
152
Service Module Discussion
155
Microwave Source Discussion
157
Beam Pointing
159
Power Module
159
5.1.4. Preliminary Mass Budget
163
5.1.5 Programmatics & Schedule
163
5.1.6. Costs
167
5.1.7. Laser Discussion
167
5.2 The Astro-SPAS Reference Concept
170
5.2.1 Concept Evolution
170
5.2.2. Microwave Advanced Demonstrator
170
5.2.3 Laser Advanced Demonstrator
176
5.2.4 Programmatics & Schedule Discussion
180
6. Alternative Options for the Initial Demonstrator
181
6.1 Columbus Precursor Missions
181
6.1.1 Eureca-3
181
6.1.2 Spacelab E-l
184
6.2 Space Shuttle Launch of Small Payloads
185
6.2.1 Use of GAS CAP for a Shuttle-Based Experiment (Option 1)
185
Discussion & Potential Problems
188
6.2.2 Deployment of Transmitter & Receiver from a GAS CAP (Option 2)
191
6.2.3 Use of Hitchhiker G & M (Option 3)
191
Hitchhiker G
191
Hitchhiker M
193
6.3 MASER & MAXUS Sounding Rockets
193
7. International Cooperation Overview
197
7.1 With the United States of America
197
7.2 With Japan
203
7.3 With the Commonwealth of Independent States
207
8. Principle Conclusions & Reommendations for a Powersat Demonstrator Programme
213
8.1 Conclusions
213
8.2 Recommendations
217
References and Footnotes for Part II
222
Appendix: Industry Contributions & Comments
225
Introduction
227
Contribution of Thomson Tubes Electroniques
229
1. Scope
231
2. Reference
231
3. Preliminary Remarks
231
4. Methodology of Investigations
231
5. Basic Assumptions
232
6. Discussions ofthe Options
233
6.1Ariane 4 Options
233
6.2 EURECA Option
235
6.3 Space Shuttle Options
236
6.4 Spacelab E-1 Precursor Mission.
237
6.5 SPAS & Spartan Platforms
238
6.6 Ariane 5 Demonstration Flights
238
6.7 MASER / MAXUS Sounding Rockets
238
Slides
239
Contribution of AEA Technology Culham Laboratory
247
Notes
249
Position Statement on Powersat Demonstrator Options
251
Contribution of Oerlikon-Contraves, Space Division
255
PIC Rectenna for Power Beaming Demonstration
259
1.PIC-Rectenna Size
259
References
263
Slides
265
Contribution of ETCA
277
Very Great number of mission opportunities
279
Transparency to other pay loads
279
Very low cost
280
Slides
281
Contribution of SAFT
293
1 Scope
295
2 Driving Parameters
295
3 General considerations on use of High Energy Density Power Sources
295
4 Discussion with regard to the Powersat demonstrator
297
4.1 Launch system used
298
4.2 Demonstrator mission
298
4.3 Saft's recommended solution
299
Slides
300
Contribution of CNRS
311
Laser Power
313
Contribution of Laserdot
315
Definition d’une premiere experience dans Fespace
317
Slides
322
Contribution of Deutsche Aerospace MBB Space Communications and Propulsion Systems Division
327
Slides
329
Contribution of Deutsche Aerospace MBB-ERNO
333
Slides
335
Contribution of MATRA
341
Report of the Japanese External Trade Organization
345
1 Solar Power Satellite [SPS] R&D and International Cooperation
347
1. Sunshine Project and Solar Power Satellite
347
2. SPS ’91 and International Cooperation
348
2 R&D by Research Organizations
350
The Institute of Space and Astronautical Science [ISAS]
350
Electrotechnical Laboratory [ETL]
354
National Space Development Agency of Japan [NASDA]
356
Central Research Institute of Electric Power Industry [CRIEPI]
357
3 R&D by Private Enterprises
358
Letters from U.S. Organizations
363
Center for Space Power
365
EM & Mv Laboratory at Texas A&M
366
Space Studies Institute
368
ETM (Extraterrestrial Materials, Inc.)
370
RkJQdWJsaXNoZXIy MTU5NjU0Mg==