ISU Space Solar Power Program Final Report 1992 Kitakyushu J

Space Solar Power Program International Space University Kitakyushu, Japan 1992

digitiazed by the Space Studies Institute.

Space Solar Power Program Final Report International Space University Kitakyushu, Japan August, 1992

Dedication This report is dedicated to the memory of Dr. Gerard K. O'Neill. (1927-1992) Dr. O'Neill pioneered the concept of harvesting the resources of space for the benefit of all humanity. He was an untiring proponent of Space Solar Power and his scholarly works, popular articles and books, including the award-winning The High Frontier, inspired many of our generation to careers in space. He founded the Space Studies Institute and served on the Board of Advisors of the International Space University since the Founding Conference in 1987.

Acknowledgements The combined efforts of many people have made this report possible. First, we would like to thank all of our sponsors for making it possible for us to attend this ISU summer session and have the opportunity to work on the Space Solar Power Program project. Throughout the summer many distinguished speakers shared their knowledge and experience with us providing invaluable help in producing a quality report. We would like to thank them for taking the time to prepare their lectures and visit us in Kitakyushu. Special thanks goes to the entire ISU faculty and staff for their patience and perserverance in helping us during the trials and tribulations of producing the final report. The SSPP faculty and staff deserve recognition and our thanks for providing guidance and reviewing the report at each stage of its development, for staying up all night with us and putting up with last minute changes and panics. This report would not have been possible without the help of the computer staff keeping the fileserver and printers limping along under intensive workloads. Finally, we would especially like to thank the sponsors of the Space Solar Power Design Program. Principal Sponsors: National Aeronautics and Space Administration U.S. Department of Energy Hydro Quebec The City of Kitakyushu, Japan Electricite de France Contributors: European Space Agency Institute for Space and Astonautical Sciences Soci6t6 des Electriciens et des Electroniciens Space Studies Institute SUNS AT Energy Council The Boeing Company Kyushu Institute of Technology Shimizu We Acknowledge Continuing Support by: Apple Computer, Inc. C E Software BioCom PictureTel

Faculty Preface The International Space University (ISU) held its 1992 summer session from June 16 to August 26 in Kitakyushu, Japan. ISU was hosted by the city of Kitakyushu. This is the fifth summer session since the inception of the International Space University summer sessions in 1988 at MIT. The ISU summer sessions consist of ten weeks of intense multidisciplinary lectures and workshops spanning all aspects of space studies. Introductory and advanced lectures are given in nine subjects: Space Architecture, Space Business & Management, Space Engineering, Space Life Sciences, Space Policy & Law, Space Resources & Manufacturing, Satellite Applications, Space Physical Sciences, and the Space Humanities program. In addition to the ISU core curriculum and advanced lecture program, each ISU summer session includes one or more design projects. Spanning a portion of the ten week session, each ISU design project serves as a time-compressed simulation of a complete space design project. The purpose of the project is to give the students an opportunity to apply knowledge gained in ISU lectures and to participate in a multidisciplinary team endeavor with challenging technical, social and economic factors. The interaction among individual students, their work teams, and the external experts and faculty provides each student with a broad overview of a large project which is usually only obtained after years of experience. Typically only project managers, directors and corporate executives have the opportunity to see the “big picture” which the students of ISU achieve. This experience is the first and principal “product” of an ISU design project. The second product of the ISU '92 Space Solar Power Program design project is this report. In it, the students describe a development plan for space solar power. The design project responds to a growing perception in the space solar power research community that building a fleet of giant solar power satellites as envisioned in the 1970s is too costly and difficult a project for a first step. People have begun to realize that a systematic research and development program will have to be implemented in order to learn how to install solar power stations in space and to assess their potential for cost effective power production. Many demonstration projects have been proposed, but few institutions or agencies have looked at these to determine what the progression of projects should be to get from where we are now to global use of space solar power. For the Space Solar Power Project, the students were specifically asked not to create a point design of a large solar power satellite system. Instead, they were asked to build a development plan and, as part of this plan, to look at possible near and mid term demonstrations of space solar power technology. The work is unique, since such an overall plan — incorporating business, environmental, legal, technical, and other factors — has never been attempted. A set of possible demonstration projects has been examined by the students. A few of these have been worked out in some detail and others are left for future study. The early demonstrations could be deployed for technology validation and possibly to supply commercially useful amounts of power to other spacecraft. These demonstrations are possible steps to assess the overall viability of solar power plants capable of providing a significant amount of power to Earth. The report covers many aspects of space solar power in addition to the engineering. For example, it addresses major political questions associated with frequency allocation for microwave power beaming, and discusses the environmental issues which must be understood before space solar power can become widely accepted. Although the students have only limited time to work on such a large design project during a 10 week summer session, there are some creative ideas in this report and we have learned of new challenges that will have to be faced in the implementation of a Space Solar Power Program. We believe this report is a valuable addition to the literature on space solar power and will serve as a starting point for future research.

Authors Humayun Arif USA Hugo Barbosa MEXICO Christophe Bardet FRANCE Michel Baroud FRANCE Alberto Behar USA Keith Berrier USA Philippe Berthe FRANCE Reinhold Bertrand GERMANY Irene Bibyk USA Joel Bisson CANADA Lawrence Bloch USA Gabriel Bobadilla SPAIN Denis Bourque CANADA Lance Bush USA Romeo Carandang USA Take mi Chiku JAPAN Norma Crosby DENMARK Manuel De Seixas PORTUGAL Joha De Vries NETHERLANDS Susan Doll USA Francois Dufour CANADA Peter Eckart GERMANY Michael Fahey USA Frederic Fenot FRANCE Stefan Foeckersperger GERMANY Jean-Emmanuel Fontaine BELGIUM Robert Fowler CANADA Harald Frey GERMANY Hironobu Fujio JAPAN Jaume Munich Gasa SPAIN Janet Gleave USA JosteinGodd NORWAY Iain Green UNITED KINGDOM Roman Haberli SWITZERLAND Toshiya Hanada JAPAN Peter Hanis UNITED KINGDOM Mario Hucteau FRANCE Didier Fernand Jacobs BELGIUM Richard Johnson USA Yoshitsugu Kanno JAPAN Eva Maria Koenig AUSTRIA Kazuo Kojima JAPAN Phani Kondepudi INDIA Christian Kottbauer AUSTRIA Doede Kuiper NETHERLANDS Konstantin Kulagin RUSSIA Pekka Kumara FINLAND Rainer Kurz GERMANY Jyrki Laaksonen FINLAND Andrew Neill Lang USA Corinna Lathan USA Thierry Le Fur FRANCE David Lewis CANADA Alain Louis FRANCE Takeshi Mori JAPAN JuanMorlanes SPAIN Marcus Murbach USA Hideo Nagatomo JAPAN Ivan O'Brien IRELAND Justin Paines UNITED KINGDOM Bryan Palaszewski USA UlfPalmnas SWEDEN Marius Paraschivoiu CANADA Asmin Pathare USA Egor Perov RUSSIA Jan Persson SWEDEN Isabel Pessoa-Lopes PORTUGAL Michel Pinto FRANCE Irene Porro ITALY Michael Reichert GERMANY Monika Ritt-Fischer GERMANY Margaret Roberts USA Lawrence Robertson II USA Keith Rogers USA Tetsuo Sasaki JAPAN Francesca Scire ITALY Katsuya Shibatou JAPAN Tatsuya Shirai JAPAN Atsushi Shiraishi JAPAN Jean-Francois Soucaille FRANCE Nova Spivack USA Dany St Pierre CANADA Afzal Suleman PORTUGAL Thomas Sullivan USA Bas Johan Theelen NETHERLANDS Hallvard Thonstad NORWAY Masatoshi Tsuji JAPAN Masaharu Uchiumi JAPAN Jouni Vidqvist FINLAND David Warrell UNITED KINGDOM Takafumi Watanabe JAPAN Richard Wills USA Frank Wolf GERMANY Hiroshi Yamakawa JAPAN Hong Zhao CHINA

Design Project Faculty PROGRAM DIRECTOR Gregg Maryniak Space Studies Institute, USA TECHNICAL DIRECTOR Masamichi Shigehara Kyushu Institute of Technology, JAPAN FACULTY Oleg Alifanov Moscow Aviation Institute, RUSSIA Sheila Bailey NASA Lewis Research Center, USA Henry Brandhorst NASA Lewis Research Center, USA Mikhail Burgasov Moscow Aviation Institute, RUSSIA Gay Canough ETM Inc., USA Dieter Kassing European Space Agency, GERMANY Nobuyuki Kaya Kobe University, JAPAN Saburou Kuwajima National Space Development Agency, JAPAN Michihiro Natori Institute for Space &Astronautical Science, JAPAN Susumu Sasaki Institute for Space &Astronautical Science, JAPAN Brent Sherwood Boeing Corp., USA Brian Tillotson Boeing Corp., USA PROJECT ASSISSTANTS Yasuhiro Akahoshi Kyushu Institute of Technology, JAPAN Eric Dahlstrom Lockheed Corp., USA Barbara McKissock NASA Lewis Research Center, USA Fredric Nordlund Institute of Air and Space, CANADA VISITING LECTURERS Alan Brown USA William Brown USA T. Stephen Cheston USA Patrick Collins UK Dennis Flood USA Teruo Fujiwara JAPAN Shuichiro Fukuzawa JAPAN Peter Glaser USA Toni Grobstein USA Iwao Igarashi JAPAN Anis Johnson USA Stewart Johnson USA Fred Koomanoff USA Jiro Kouchiyama JAPAN Shinya Matsuda JAPAN Hiroshi Matsumoto JAPAN Shinji Matsumoto JAPAN Makoto Nagatomo JAPAN Yoshihiro Naruo JAPAN Hidenori Nishiwaki JAPAN Stewart Nozette USA John Osepchuk USA KnutOxnevad NORWAY John D. G. Rather USA Bradford Schupp USA Ron Schaffer USA Marc Simmons CANADA Fumitaka Sugimura JAPAN Yoshiki Yamagiwa JAPAN Hiroyuki Yashiro JAPAN

Table of Contents 1 Introduction.......................................................................................................................... 1 1.1 1.2 1.3 1.4 Vision for the Project............................................................................................... 1 Space Solar Power Program Statement of Work.....................................................2 An Historical Perspective for Space Solar Power....................................................3 General assumptions.................................................................................................6 2 Energy Analysis...................................................................................................................11 2.1 Terrestrial Energy Demand and Models................................................................. 11 2. 1. 1 Current Energy Consumption.................................................................... 11 2. 1. 2 Future Energy Consumption....................................................................... 14 2. 1. 3 Population Growth and Energy Demand Models........................................ 15 2. 1.4 Conclusion................................................................................... 18 2.2 Terrestrial Energy Supply........................................................................................ 18 2.2.1 Energy Sources............................................................................................ 19 2.2.2 Major Uses and Conversion of Primary Energy.........................................24 2.2.3 Cost of Terrestrial Energy........................................................................... 29 2.3 Space Energy............................................................................................................ 32 Uses of Energy in space........................................................................................... 32 Locations of Energy Demand in Space....................................................................34 Providing Space Power............................................................................................34 References..................................... 36 3 Markets................................................................................................................................ 37 3.1 Market Analysis........................................................................................................37 3.1.1 Near-Term Applications............................................................................... 37 3.1.2 Mid-Term Applications................................................................................42 3.1.3 Long Term Markets......................................................................................51 3.2 Marketing.................................................................................................................53 3.2.1 Product identification...................................................................................54 3.2.2 Players Involved...........................................................................................55 3.2.3 Potential/Spin-off Determination.................................................................55 3.2.4 Pricing..........................................................................................................56 3.2.5 Promotion & Publicity.................................................................................59 3.3 Marketing and Financing Schedule..........................................................................60 References............................................................................................................................ 63 4 Overall Development Plan................................................................................................... 65 4.1 Program Requirements..............................................................................................65 4.2 Identification of System Drivers............................................................................... 65 4.2.1 Political and Social.......................................................................................66 4.2.2 Environmental and Safety............................................................................67 4.2.3 Business.......................................................................................................68 4.2.4 Technical......................................................................................................68 4.3 Technology Options..................................................................................................69 4.3.1 Power Options..............................................................................................69 4.3.2 Engineering Space Technologies................................................................ 71 4.3.3 Space Transportation....................................................................................72 4.4 Technology Development Plan....................................................................72 4.5 Non-technical versus Technical Interaction.................................................78 4.6 Overall Schedule........................................................................................................... 80 References............................................................................................................................84 5 Organizational Plan.............................................................................................................. 85 5.1 International Cooperation.........................................................................................85 5.1.1 New Factors in International Space Cooperation........................................85 5.1.2 Objectives in Space Under the New Regime.............................................. 86 5.1.3 International Political Implications of the Space Solar Power Program.... 86

5.2 Organizational Structure...........................................................................................87 5.2.2 Management Structure................................................................................ 88 5.3 Legal Framework..................................................................................................... 93 5.3.1 Some Legal Aspects Of Outer Space......................................................... 93 5.3.2 The Utilization Of Earth Orbits And Radio Frequency Spectrum............. 96 5.3.3 Technology Transfer & Intellectual Property............................................. 98 5.3.4 Some Responsibility And Liability Issues ................................................. 99 5.3.5 Insurance......................................................................................................101 5.3.6 Dispute Resolution.......................................................................................101 5.3.7 Schedule...........................................................................................................103 5.4 Security Issues...........................................................................................................105 5.4.1 Technology Transfer....................................................................................106 5.4.2 Increasing Vulnerability and Interdependency............................................ 106 5.4.3 Concluding Remarks....................................................................................107 5.5 External Relations.................................................................................................... 108 5.5.1 External Relations with Governments, Industry and Int'l Organizations... 108 5.5.2 Coordination with the Scientific Community..............................................Ill 5.5.3 General Public............................................................................................ 115 References.............................................................................................................................124 6 Environmental and Safety Issues..........................................................................................125 6.1 Effects of Transmission of Energy...........................................................................125 6.1.1 Propagation of the Beam through the Atmosphere..................................... 125 6.1.2 Electromagnetic Effects on Biota.................................................................128 6.1.3 Interference with Electronic Devices...........................................................138 6.2 Satellite Construction Effects....................................................................................140 6.2.1 Launch Support Industry Effects..................................................................140 6.2.2 Launch Effects..............................................................................................140 6.2.3 On-Orbit Construction Effects.....................................................................143 6.2.4 Lunar Operation Effects...............................................................................151 6.3 Rectenna Effects........................................................................................................153 6.3.1 Construction.................................................................................................153 6.3.2 Climate and Socio-Economic Modification.................................................154 6.4 Security and Maintenance.........................................................................................155 6.5 Planning and Scheduling...........................................................................................156 References.............................................................................................................................159 7 Power Systems......................................................................................................................163 7.1 Solar to Electric Conversion......................................................................................163 7.1.1 Photovoltaics................................................................................................163 7.1.2 Solar Dynamic Systems...............................................................................168 7.1.3 Comparison of Photovoltaics with Solar Dynamic Systems....................... 177 7.1.4 New Technologies........................................................................................178 7.2 Power Transmission..................................................................................................184 7.2.1 Microwave Transmission.............................................................................184 7.2.2 Laser.............................................................................................................198 7.3 Receiver Location..................................................................................................... 205 7.4 Power Systems for Demonstrations..........................................................................209 References.............................................................................................................................210 8 Space Transportation............................................................................................................ 213 8.1 Operational Space Transportation Systems...............................................................213 8.1.1 Review and Analysis of Earth To Orbit Launchers................................... 213 8.1.2 Piggy-back Options & Small Launch Vehicles.......................................... 217 8.2 Review and Analysis of Upper Stages/Orbital Transfer Vehicles........................... 222 8.2.1 Definitions....................................................................................................222 8.2.2 Present Status of Upper Stages/OTV's....................................................... 224 8.2.3 OTV Analysis.............................................................................................. 224 8.2.4 Future In-Orbit Vehicles............................................................................. 226 8.3 Space Transportation Systems Under Development................................................ 229 8.4 Previous Studies...................................................................................................... 231 8.4.1 Satellite Power System (SPS) Reference Concept Description.................. 232 8.4.2 Space Transportation Systems (STS) Studied............................................. 232

8.4.3 Previous Heavy Launchers................................................................... 238 8.5 Future Space Transportation Systems......................................................................240 8.5.1 What is insufficient with today's Space Transportation infrastructure ?....240 8.5.2 Personnel Transport.....................................................................................241 8.5.3 Priority Cargo..............................................................................................244 8.5.4 Bulk.............................................................................................................245 8.6 Technology Assumptions.........................................................................................245 8.6.1 Metallized Propellants.................................................................................246 8.6.2 Lightweight Upper Stages...........................................................................246 8.6.3 High Energy Density Propellants................................... 247 8.6.4 Aerobrake/Aerocapture...............................................................................247 8.6.5 Air Breathing Propulsion............................................................................247 8.6.6 Slush Hydrogen........................................................................................... 248 8.6.7 In-Situ Propellants....................................................................................... 248 8.6.8 Mass Drivers................................................................................................248 8.6.9 Gun Propulsion............................................................................................248 8.6.10 Laser Propulsion..........................................................................................248 8.6.11 Nuclear Thermal Propulsion.......................................................................248 8.6.12 Materials...................................................................................................... 249 8.6.13 Mission Applications..................................................................................250 8.7 Lunar Transportation............................................................................................... 251 8.7.1 Conventional Chemical LO2/LH2 Propulsion........................................... 251 8.7.2 Electric Propulsion......................................................................................253 8.7.3 Nuclear Thermal Propulsion.......................................................................255 8.7.4 Mass Driver.................................................................................................256 8.8 Scheduling.... ........................................................................................................... 256 8.9 Conclusions.............................................................................................................. 257 References............................................................................................................................ 258 9 Space Manufacturing, Construction, & Operations................................................................. 259 9.1 A Matter of scale......................................................................................................259 Problems on Earth.................................................................................................... 260 The Lunar Solution.................................................................................................. 260 9.2 Structures.................................................................................................................. 261 9.2.1 Modeling.....................................................................................................261 9.2.2 Control.........................................................................................................263 9.3 Construction/Assembly Operations.........................................................................267 9.3.1 Construction of Erectable Structures..........................................................267 9.3.2 Deployable Structures.................................................................................272 9.3.3 Schedule Issues for Deployable and Assembled Structures........................276 9.4 Non-Terrestrial Resource Utilization.......................................................................277 9.4.1 Lunar Resources..........................................................................................277 9.4.2 Other Non-terrestrial Resources..................................................................279 9.4.3 Non-terrestrial Resources Development Program Schedule....................... 280 9.5 In-Space Manufacturing........................................................................................... 283 9.5.1 Lunar Manufacturing..................................................................................283 9.5.2 In-Space Manufacturing..............................................................................284 9.5.3 Schedule Issues for Space Manufacturing Technology..............................284 10 Design Examples.................................................................................................................291 10.1 Near-Term Earth to Space........................................................................................291 10.1.1 Facilities......................................................................................................291 10.1.2 Orbital Considerations.................................................................................293 10.1.3 Mission Objectives...................................................................................... 295 10.1.4 Vehicle Configuration.................................................................................296 10.2 Space to Space Demonstration................................................................................. 301 10.2.1 Mission Objectives...................................................................................... 301 10.2.2 Mission Scenario................................................................•........................ 301 10.2.3 System Level Design.................................................................................. 303 10.2.4 System Budgets and Scheduling.................................................................315 10.2.5 Conclusions................................................................................................. 319 References.............................................................................................................................321 10.3 Space to Earth Demonstration.................................................................................. 322

10.3.1 Project Description...................................................................................... 322 10.3.2 Mission Analysis......................................................................................... 326 10.3.3 Space Segment............................................................................................ 329 10.3.4 Ground Segment...........................................................................................347 10.3.5 Scheduling....................................................................................................348 10.3.6 Summary and Conclusions.......................................................................... 349 References.............................................................................................................................354 10.4 Megawatt Class Demonstration................................................................................ 355 10.4.1 Constraints.................................................................................................. 355 10.4.2 Platform Design/Sizing............................................................................... 356 10.4.3 Concept Summary....................................................................................... 371 10.4.4 Scheduling....................................................................................................377 10.4.5 Summary and Conclusions.......................................................................... 379 References.............................................................................................................................381 11 Finance................................................................................................................................. 383 11.1 Costing and Economic Analysis...............................................................................383 11.1.1 Space Based Early Commercial Uses - Costing and Viability.................... 383 11.1.2 Space to Earth............................................................................................. 390 11.2.1 Financial Sources Overview........................................................................ 397 11.2.2 Financial Risk Analysis................................................................................ 400 11.2.3 Staged Plan for Financing........................................................................... 404 11.2.4 Financial Options for the SSPP staged plan................................................ 407 11.3.1 Financial Revenue Forecasts....................................................................... 409 11.3.2 Conclusions................................................................................................. 414 References............................................................................................................................ 417 Appendix A: Summary of Proposed Design Examples..............................................................420 Appendix B: Lunar Rover............................................................................................................424 Appendix C: LEO Constellation of Small SPS............................................................................426 APPENDIX D: Atmospheric Tester............................................................................................ 434 Appendix E: Feasibility Study of Laser Technology in the Space to Space Demonstration..... 436 Appendix F: The ASAP / Viking Near Term Demonstration.................................................... 440 Appendix G: Scheduling: Macproject II......................................................................................444 Appendix H: Past and Current Space Solar Power Projects........................................................448 Appendix I: Questions to be Addressed.......................................................................................456 1 Economic/Businss Issues...................................................................................................456 2 Demonstration-Specific Issues..........................................................................................457 3 Demonstration-Specific Issues...........................................................................................458 4 Political, Social, and Legal Issues..................................................................................... 462 5 Technical Issues................................................................................................................ 464 6 Environmental and Safety Aspects....................................................................................467 Appendix J: Power Beaming for Orbital Transfer or Lunar Transfer Vehicle...........................472 Appendix K: Low-Cost Launch Technology Demo For Earth to Orbit Propulsion................... 476

List of Figures Figure 1.1 Artist's Impression of the RAMP............................................................................. 3 Figure 1.2 The NASA/DOE Reference SPS............................................................................... 4 Figure 1.3 The 1987 SHARP test airplane..................................................................................5 Figure 1.4 Schematic for SPS2000............................................................................................. 6 Figure 2.1 and 2.2 Energy Breakdown Results for the Years 1978 and 1991............................ 13 Figure 2.3 Projected World Population until 2100..................................................................... 16 Figure 2.4 Future Energy Demand for Different Growth and Energy Consumption................ 16 Figure 2.5 Projected World Energy Shortfall............................................................................. 18 Figure 2.6 Assessment of Mix of Power Sources....................................................................... 29 Figure 2.7 Sequence of Operations for Primary Energy Sources............................................... 31 Figure 2.8 Comparative Fuel Costs for Cumulative U.S. Energy Demand................................32 Figure 2.9 Propellant Usage Breakdown for a Sample Satellite in a 900 km Orbit................... 33 Figure 2.10 Power Breakdown for a Typical Satellite................................................................33 Figure 3.1 Eclipse Lengths in Geostationary Orbit During Eclipse Season...............................44 Figure 3.2 Battery Masses for Communications Satellites.........................................................46 Figure 3.3 High and Low Predictions of Global Electricity Market..................................... 53 Figure 3.4 Simplified Macroeconomics Model between Energy and the Economy.................57 Figure 3.5 Energy Cost Ranges for Different Power Generation Processes..............................59 Figure 3.6 Marketing Schedule................................................................................................... 62 Figure 4.1 Top-Level Space Solar Power Program Requirements..............................................65 Figure 4.2 Driving Requirements for Space Solar Power Program............................................69 Figure 4.3 Cost of using photovoltaic versus solar dynamic power...........................................70 Figure 4.4 Space Solar Power Program......................................................................................73 Figure 4.5 Overall Development Plan........................................................................................77 Figure 4.6 Overall Space Solar Power Program Task Schedule.................................................82 Figure 4.7 Timeline for Overall Space Solar Power Program....................................................83 Figure 5.1 Organization Chart of the Management Structure..................................................... 89 Figure 5.2: Responsibilities of the Scientific Branch..................................................................91 Figure 5.3: The Management Structure for the Space to Space Beaming Demo. ($80M)..........93 Figure 5.4 Political and Legal Task Schedule............................................................................ 104 Figure 5.5 Political and Legal Tasks for Demo (1,2,3)...............................................................105 Figure 5.6 Long Term Political and Legal Tasks........................................................................ 105 Figure 6.1 Atmospheric Attenuation vs Frequency at Sea-Level for Horizontal Propagation... 126 Figure 6.2 Transmission Efficiency - Molecular Absorption and Raia......................................127 Figure 6.3 Absorbency of retina according to wavelength.........................................................129 Figure 6.4 Microwave Irradiation and the Damage in Dog Eye..................................................133 Figure 6.5 Microwave Irradiation and Cataracts on Rabbit........................................................134 Figure 6.6 USA standard for Interference Levels for Electronic Medical Devises....................139

Figure 6.7 Micrometeoroid Occurrence...................................................................................... 143 Figure 6.8 Dose Equivalent as a Function of Aluminum........................................................... 146 Figure 6.9 Near-Term Environmental Tasks............................................................................... 158 Figure 6.10 Long Term Environmental Tasks.............................................................................158 Figure 7.1 Array Efficiency vs Time..........................................................................................166 Figure 7.2 Array Power vs Temperature.....................................................................................166 Figure 7.3 Possible Concentrator Collector Configurations........................................................ 169 Figure 7.4 Relationship Between the Concentration Ratio and Temperature of the Receiver .. 170 Figure 7.5 Possible Satellite Configurations with Solar Dynamic Systems................................ 171 Figure 7.6 Thermodynamic Efficiencies of Terrestial Heat Engines.........................................172 Figure 7.7 Organic Rankine Cycle Power System...................................................................... 172 Figure 7.8 Closed Brayton Cycle (CBC)Power System............................................................. 173 Figure 7.9 Stirling Engine with Linear Alternator...................................................................... 173 Figure 7.10 Schematic of Space Station Freedom Proposed SDS.............................................. 176 Figure 7.11 The SDS for Space Station Freedom....................................................................... 176 Figure 7.12 Cost Comparison for Space Station Freedom Power Generation...........................178 Figure 7.13 Model of a Thermoelectric Generator.....................................................................179 Figure 7.14 Coaxial geometric TPV converter........................................................................... 180 Figure 7.15 Calculated Efficiency for Monochromatic Cells Coupled to Laser Light...............181 Figure 7.16 Schematic view of a Gyroreactor........................................................................... 182 Figure 7.17 Liquid Droplet Radiator Concept.............................................................................182 Figure 7.18 Comparison of Specific Power for LDR and Heat Pipe Radiator...........................183 Figure 7.19 Mass Comparison for LDR and Heat Pipe Radiator (100 kW Nuclear Stirling) .. 183 Figure 7.20 Mainlobe Radiation Pattern...................................................................................... 184 Figure 7.21 Rectenna Efficiency.................................................................................................. 185 Figure 7.22 Power Distribution at Rectenna................................................................................ 186 Figure 7.23 Slotted Waveguide Radiator.................................................................................... 187 Figure 7.24 Integrated Solar Cell and Solid State Amplifiers......................................................187 Figure 7.25 Two Tone Pilot-Signal Retrodirective Antenna....................................................... 188 Figure 7.26 Atmospheric Attenuation Across the Radio Microwave and Millimeter Regions . 189 Figure 7.27 Atmospheric Attenuation Due to the Rain and Fog.................................................190 Figure 7.28 Penetration Depth as a Function of the Frequency for Snow.................................. 190 Figure 7.29 Simplified electrical schematic for an early rectenna element................................ 193 Figure 7.30 Photograph of an early rectenna element................................................................ 193 Figure 7.31 Solar Cell with Microwave Antenna, (conceptual design)......................................196 Figure 7.32 Antenna Paddle........................................................................................................ 197 Figure 7.33 Examples of Optical Pumping Lines in Solar Energy..............................................199 Figure 7.34 Indirect Solar Pumped Laser.....................................................................................199 Figure 7.35 Operation of Indirect Solar Pumped Laser...............................................................200 Figure 7.37 Absorbing Sphere Concept......................................................................................202 Figure 7.36 Optical Rectenna Configuration...............................................................................203

Figure 7.39 Possible Offshore Rectenna Sites in the North Sea................................................206 Figure 7.40 Preferred Construction for Offshore Rectenna Site................................................ 207 Figure 7.38 Possible Rectenna Site Locations in Continental United States............................. 208 Figure 7.41 Schedule Tasks for Power Systems - Demo 3......................................................... 209 Figure 7.42 Power System Tasks For Large Scale Demo.......................................................... 209 Figure 8.1 OMV/OTV Missions................................................................................................. 222 Figure 8.2 Example of Type 4.....................................................................................................223 Figure 8.3 OTV Concept for a Three Satellite LEO to GEO...................................................... 226 Figure 8.4 The Ariane 5 launcher............................................................................................... 229 Figure 8.5 Payload accommodation on Ariane 5........................................................................230 Figure 8.6 Payload accommodation on H-2................................................................................ 231 Figure 8.7 The Taurus Launcher [Isakowitz, 1991].................................................................... 231 Figure 8.8 SPS GEO Construction Concept................................................................................232 Figure 8.9 Boeing Studies and Comparison with Existing Launchers.......................................233 Figure 8.10 Rockwell Configuration...........................................................................................233 Figure 8.11 Boeing Configuration.............................................................................................. 234 Figure 8.12 Rockwell Configuration...........................................................................................234 Figure 8.13 Cargo Electric OTV.................................................................................................235 Figure 8.14 Personnel OTV........................................................................................................ 236 Figure 8.15 Total Transportation Cost Summary (in “1980s” millions).....................................236 Figure 8.16 SPS Space Transportation Costs..............................................................................237 Figure 8.17 Development Planning (in 1980)............................................................................. 237 Figure 8.18 Ratio of Thrust to Weight for Different Propulsion Systems.................................. 252 Figure 8.19 Space Vehicles of a Lunar Transportation System................................................. 253 Figure 8.20 Nuclear Electric LTV.............................................................................................. 254 Figure 8.21 Propulsion Technology Comparison and Trip Time............................................... 254 Figure 8.22 An Example of 300 KW Solar Electric OTV.......................................................... 255 Figure 8.23 Research and Development Tasks for Space Transportation Technologies............ 257 Figure 8.24 Advanced Space Transportation Development Tasks............................................. 257 Figure 9.1 Block diagram of Reduced Order Model Design...................................................... 267 Figure 9.2 Reduced Order Model design with improved Residual Mode Filter......................... 267 Figure 9.3 All possible box truss configurations that are possible by flipping the diagonal members on each of the six faces.................................................................................................270 Figure 9.4 Top and side view of a planer tetrahedral truss......................................................... 271 Figure 9.5 Five candidate trusses. Notice concept A, C, D and E............................................. 272 Figure 9.6 Number of columns per square kilometer in a tetrahedral truss as a function of column length-............................................................................................................................. 272 Figure 9.7 (a) Beam Deployment Concepts (b) Tetrahedral Fold............................................. 274 Figure 9.8 (a) Octet Fold (b) Parabolic Surface Truss............................................................... 275 Figure 9.9 (a) Fabrication Method (b) 2-Dimensional Deployment........................................ 275 Figure 9.10 (a) Modularized Inflatable (b) Rigidized Inflatable............................................... 276 Figure 9.11 Adaptive structure................................................................................................... 276

Figure 9.12 Construction, Assembly, and Deployment Task Schedule..................................... 277 Figure 9.13 Average Lunar Soil Composition............................................................................ 279 Figure 9.14 Non-Terrestrial Resource Utilization Task Schedule...............................................283 Figure 9.15 In-Space Manufacturing Task Schedule...................................................................287 Figure 10.1.1 Arecibo Observatory, Puerto Rico.......................................................................292 Figure 10.1.2 Tracking rates for Satellites at Various Altitudes................................................. 293 Figure 10.1.3 Arecibo Viewing Geometry................................................................................. 293 Figure 10.1.4 Trade-offs for Altitude Choice.(Arecibo Radar)...................................................294 Figure 10.1.5 Number of Passages over Arecibo Orbits During the Year 1992........................ 295 Figure 10.1.6 Inflatable Receiver Concept..................................................................................297 Figure 10.2.2 Mir-Progress Docking Configuration....................................................................302 Figure 10.2.3 Demonstration Scenario........................................................................................303 Figure 10.2.4 Flight Operation Flowchart...................................................................................304 Figure 10.2.5 Phased Array Antenna...........................................................................................305 Figure 10.2.6 Phased Array Functional Diagram........................................................................306 Figure 10.2.7 Antenna System Layout........................................................................................307 Figure 10.2.8 Phase Control.........................................................................................................307 Figure 10.2.9 Beam Cone............................................................................................................308 Figure 10.2.10 Positioning of Antenna and Rectenna.................................................................311 Figure 10.2.11 Deployment of the Rectenna............................................................................. 311 Figure 10.2.12 Shading of the Rectenna.......................................................................................313 Figure 10.2.13 Experiment Functional Block Diagram...............................................................314 Figure 10.2.14 Power Budget......................................................................................................315 Figure 10.2.15 Task Chart (Demonstration 1).............................................................................317 Figure 10.2.16 Timeline (Demonstration 1)................................................................................318 Figure 10.2.17 Work Break Down Structure...............................................................................319 Figure 10.3.1 Satellite Configuration..........................................................................................330 Figure 10.3.2 Calculations for SGD-1.........................................................................................331 Figure 10.3.3 Retrodirective Cell Architecture............................................................................332 Figure 10.3.4 SGD-1 Platfom Structure Design..........................................................................333 Figure 10.3.5 SGD-1 SatelliteStowed Configuration..................................................................334 Figure 10.3.6 Thermal Space Environment.................................................................................335 Figure 10.3.7 Efficiency of SDG-1 Phased Array.......................................................................336 Figure 10.3.8 Spacecraft Attitude Control...................................................................................339 Figure 10.3.9 Electrical Architecture...........................................................................................340 Figure 10.3.10 Possible Deployed Satellite Configurations........................................................ 344 Figure 10.3.11 Schematic of a Satellite in Orbit.........................................................................345 Figure 10.3.12 Solar Dynamic Concepts Using a Gyroreactor...................................................346 Figure 10.3.13 Ground Segment Configuration..........................................................................348 Figure 10.3.14 Demo 2 Tasks......................................................................................................350 Figure 10.3.15 Demo 2 Schedule Timeline.................................................................................351

RkJQdWJsaXNoZXIy MTU5NjU0Mg==