SSI Quick History: The Search For Lunar Water

and for extraction of useful materials from lunar or planetary sources. It also deals in a significant way with the human ability to live and work in space, by developing technologies for life-support systems and the human/machine interface. Until advanced technology programs like Project Pathfinder are initiated, the exciting goals of human exploration will always remain 10 to 20 years in the future. Life sciences research is also critical to any programs involving relatively long periods of human habitation in space. Because the focus of our life sciences research for the last several years has been on Space Shuttle flights, which only last for five to ten days, there has been no immediate need for a program to study the physiological problems associated with longer flights. Without an understanding of the longterm effects of weightlessness on the human body, our goal of human exploration of the solar system is severely constrained. Before astronauts are sent into space for long periods, research must be done to understand the physiological effects of the microgravity and radiation environments, to develop medical techniques to perform routine and emergency health care aboard spacecraft. Project Pacer, developed by NASA’s Office of Space Science and Applications, is a focused program designed to develop that understanding and provide the physiological and medical foundation for extended spaceflight. This research would be conducted in laboratories and on Space Shuttle missions in preparation for the critical long-term experiments to be conducted on the Space Station. Until the Space Station is occupied, and actual long-duration testing is begun, we will lack the knowledge necessary to design and conduct piloted interplanetary flights or to inhabit lower-gravity surface bases. Although the research conducted prior to the occupation of Space Station cannot provide definitive answers to several key questions, it is an essential precursor to the research and technology development on the Space Station. AVOIDING “ONE-SHOT” MISSIONS We must pursue a more deliberate program; this implies that we should avoid a “race to Mars.” There is a very real danger that if the U.S. announces a human Mars initiative at this time, it could escalate into another space race. Whether such a race was real or perceived, there would be constant pressure to set a timetable, to accelerate it if possible, and to avoid falling behind. Schedule pressures, as the Rogers commission noted, can have a very real, adverse effect. The pressure could make it difficult to design and implement a program which would have strong foundation and adequate momentum to sustain itself beyond the first few piloted missions. This could turn an initiative that envisions the eventual development of a habitable outpost into another one-shot spectacular. Such a dead-end venture does not have the support of most NASA personnel. Neither, according to the National Commission on Space, does it have the support of the public. A “theme brought forward repeatedly” in the Commission’s extensive public sessions was “a strong wish that our next goal for piloted space activity not be another Apollo — a one-shot foray or a political stunt.” THE OFFICE OF EXPLORATION During the majority of this work, there was no focal point within NASA for studies on human exploration. Recognizing this deficiency, and adopting one of the early recommendations of this study, the NASA Administrator has established the Office of Exploration to fund, direct, and coordinate studies related to human exploration. Both of the human exploration initiatives described in this work were generated in a workshop or task force environment. The three to four months devoted to their formulation were adequate only to develop the starting point for in-depth studies. The Office of Exploration will be responsible for coordinated mission studies to develop these and other scenarios, to assess mission concepts and schedules, and to study trade-offs in requirements, technology, transportation, and facilities utilization. Advanced technology and transportation requirements cannot be developed in a vacuum. These mission studies will provide a context for planning technology and transportation development and Space Station evolution (and studies in these areas will, of course, feed back into the mission scenarios). The establishment of the Office of Exploration was an important step. Adequate support of the Office will be equally important, and will be an indication of the commitment to long-term human exploration. There is some concern among observers that the office was created only to placate critics, not to provide a serious focus for human exploration. Studies relating to human exploration of the Moon or Mars currently command only about .03 percent of NASA’s budget (approximately one dollar out of 3000); this is not enough. OUTPOST ON THE MOON The lunar initiative is a logical part of a long-range strategy for human exploration. The National Commission on Space recommended that the U.S. follow a “natural progression for future space activities within the solar system,” and concluded that the natural progression of human exploration leads next to the Moon. The establishment of a lunar outpost would be a significant step outward from Earth — a step that combines adventure, science, technology, and perhaps the seeds of enterprise. Exploring and prospecting the Moon, learning to use lunar resources and work within lunar constraints, would provide the experience and expertise necessary for further human exploration of the solar system. The lunar initiative is a major undertaking. Like the Mars initiative, it requires a national commitment that spans decades. It, too, demands an early investment in advanced technology, Earth-to-orbit transportation, and a plan for Space Station evolution. Even considering its gradual evolution over the first five years, the ambitious buildup of the lunar outpost envisioned in this scenario would require a high level of effort in the mid-to-late 1990s, and would place substantial demands on transportation and orbital facilities. This is a period when resources may be scarce. However, this initiative is quite flexible. Its pace can be controlled, and more important, adapted to capability. It is possible to lay the foundation of the outpost in the year 2000, then build it gradually, to ease the burden on transportation and Space Station at the turn of the century. The lunar initiative is designed to be evolutionary, not revolutionary. Relying on the Space Station for systems and subsystems, for operations experience, and for technology development and testing, it builds on and gradually extends existing capabilities. Many of the systems needed for reaching outward to Mars could be developed and proven in the course of work in the Earth-Moon region. It is not absolutely necessary to establish this stepping stone, but it certainly makes sense to gain experience, expertise, and confidence nearer Earth first, and then to set out for Mars. This study did not include an assessment of the level of public support for these initiatives. However, there is considerable sentiment that Apollo was a dead-end venture, and we have little left to show for it. Although this task force found some who dismissed this initiative “because we’ve been to the Moon,” it found many more who feel that this generation should continue the work begun by Apollo. Although explorers have reached the Moon, the Moon has not been fully explored. This initiative would push back frontiers, not to achieve a blaze of glory, but to explore, to understand, to learn, and to develop; it would place the Apollo Program into a broader context of continuing exploration, spanning several generations of Americans. And it fits beautifully into a natural progression of human expansion that leads “from the highlands of the Moon to the plains of Mars.” CONCLUSION We suggest the outline of one strategy — a strategy of evolution and natural progression. The strategy would begin by increasing our capabilities in transportation and technology — not as goals in themselves, but as the necessary means to achieve our goals in science and exploration. The most critical and immediate needs are related to advanced transportation systems to supplement and complement the Space Shuttle, and advanced technology to enable the bold missions of the next century. Until we can get people and cargo to and from orbit reliably and efficiently, our reach will exceed our grasp; until we begin the technologies proposed by Project Pathfinder, the realization of our aspirations will remain over a decade away. The strategy emphasizes evolving our capabilities in low-Earth orbit, and using those capabilities to study our own world and explore others. With these capabilities, we would position ourselves to lead in characterizing and understanding planet Earth; we would also position ourselves to continue leading the way in human exploration. According to the NASA Advisory Council’s Task Force on Goals, “Recognized leadership absolutely requires the expansion of human life beyond the Earth, since human exploration is one of the most challenging and compelling displays of our spacefaring abilities.” We should explore the Moon for what it can tell us, and what it can give us — as a scientific laboratory and observing platform, as a research and technology test bed, and as a potential source of important resources. While exploring the Moon, we would learn to (continued on back page)

RkJQdWJsaXNoZXIy MTU5NjU0Mg==