SSI Quick History: The Search For Lunar Water

THE HIGH FRONTIER NEWSLETTER VOLUME XIII ISSUE 1 JANUARY/FEBRUARY 1987 SPACE STUDIES INSTITUTE RO. BOX 82 PRINCETON, NEW JERSEY 08540 PRESIDENT’S COLUMN FORWARD TO THE MOON It is becoming apparent from a variety of sources that the work of the National Commission on Space, coupled with excellent work inside NASA and in European, Soviet and Japanese space agencies, has brought about a quantum change in experts’ perceptions of how we should enter the trans-terrestrial environment. Professionals now quite generally accept that we must make the fullest practical use of non-terrestrial materials to bootstrap our way outward. In that much-improved climate of expert opinion, SSI’s research programs take on an even more immediate value. The fundamental resources available in the trans-terrestrial environment are the rich, constant flow of energy from the Sun, and the materials on the trans-terrestrial bodies. As written by the Space Commission, the logical sequence of development for the new resources is to begin with those closest to Earth and progress later to those farther away. The closest by far are those of the Moon, our sister-planet, which remains fixed in the gravitational vice of our Earth, and is correspondingly accessible at all times. All other known resources, such as the moons of Mars, are about one thousand times farther away, and would take a correspondingly greater and much more time-consuming program to reach. We know already that materials vital for space propulsion and for construction are abundant on the Moon: lunar glasses for composites, oxygen for propellants, silicon, iron and aluminum for building factories and power satellites to serve the Earth from high orbit. What we don’t know about the Moon is exactly the point of one of SSI’s “Breakthrough Projects,” the design of a space probe to enter and remain circling in a low orbit over the poles of the Moon. That “Lunar Polar Probe” would be a simple spacecraft, designed to focus on a specific, vital question: are there frozen volatile materials, the life-giving elements carbon, nitrogen and hydrogen, trapped as kilotons of permafrost in the deep craters near the lunar poles, craters which have never seen the warmth of sunlight in millions or even billions of years? Theory, by leading space scientists working over a period of more than 20 years, says there should be. The Lunar Polar Probe would find the rich lodes of lifegiving elements if they are there. In keeping with SSI’s philosophy of focusing on specific vital questions rather than diffusing effort over many, the Lunar Polar Probe would carry only a small number of (continued on page 4) GUEST COLUMN Dr. James French, former Senior Technical Manager at the Jet Propulsion Laboratory, is currently Vice President of Engineering for the American Rocket Company of Menlo Park, California. LOW-COST LUNAR POLAR MISSIONS by J. R. French PURPOSE OF THE STUDY The purpose of this study is to identify and characterize low-cost missions which could provide information concerning location and quantity of lunar resources. The particular focus of the study is the polar regions of the Moon because of the possible presence of water and because the polar regions offer particular advantages as a permanent base site. SIGNIFICANCE OF THE MISSION A permanent Lunar Base is potentially of great significance to humankind’s future activities in the solar system. Such a base is of undoubted scientific value. Its value as an operational support base however is in large degree dependent upon the availability of natural resources. We know from the results of previous Lunar exploration (Ref. 1) that most of the structurally important metals as well as useful materials such as silicon are available in the lunar regolith, mostly in oxide form. Various means of reducing the oxides have been identified. Thus a Lunar facility could be well supplied with structural and other raw materials and copious quantities of oxygen suitable for use as a propellant or for other purposes. The flaw in this rather rosy picture is the almost total lack of hydrogen on the Moon. Other than a very small amount deposited in the regolith as solar wind protons, no hydrogen has been found in the returned samples. There is no evidence that water, the most commonly found hydrogen compound on Earth, has ever existed in significant quantities on the surface of the Moon, at least in liquid form. As will be seen later, the presence of hydrogen, particularly in the form of water, will be of profound significance to Lunar operations. If there is no supply on the Moon, hydrogen can be imported from Earth or possibly from the moons of Mars or the asteroids. Clearly these options are less attractive than a local supply. Surprisingly, some theoretical work indicates the possibility that water ice in modest quantities could be permanently frozen in some polar regions of the Moon which never see sunlight. While this theory is somewhat controversial, its significance to future utilization of the Moon implies that a moderately priced mission to verify or disprove the theory should have a high priority in Lunar exploration. Fortunately, even if the results should turn out negative in regard to the presence of water, such a mission would be most useful in determining the distribution of other elements. This would be of substantial scientific interest as well as useful in selecting a base site. CONCLUSIONS OF THE STUDY The study described in this report concludes that a spacecraft and instruments capable of surveying the Lunar polar regions to determine the presence of hydrogen (water) and to give data concerning the presence and distribution of other elements can be built and flown for costs in the neighborhood of $40 million to $50 million dollars exclusive of launch costs. In order to achieve costs in this range, heavy reliance is placed upon adaptation of existing spacecraft designs and use of well developed instrument technology rather than extensive new development. DISCUSSION Theory of Lunar Water The presence of water on the Moon was first given credibility by Watson, Murray, and Brown in 1961 (Ref. 2). In this work it was postulated that certain regions in the vicinity (continued on page 2) Low cost Lunar Polar Probe searching for frozen volatiles. Copyright 1987 Space Studies Institute

RkJQdWJsaXNoZXIy MTU5NjU0Mg==