Space Solar Power Review Vol 7 Num 2 1988

can all be found in [9], which also exists in English translation. In structural computations, symmetry is a relatively neglected subject, but the literature is nevertheless too abundant to be properly presented here. A more comprehensive survey is given in [3], REFERENCES [1] Baumslag, B. & Chandler, B. (1986) Group Theory (Schaum's Outline Series, McGraw-Hill, New York). [2] Bossavit, A. (1985) L'exploitation de la symetrie en calcul des structures, in: Tendances actuelles en calcul des structures (Pluralis, Paris, pp. 959-977). [3] Bossavit, A. (1986) Symmetry, groups and boundary value problems, Comp. Meth. Appl. Meeh. & Engng., 56, pp. 167-215. [4] Cioranescu, D. & Saint-Jean Paulin, J. (1985) Reinforced and Alveolar Structures (Rpt. 85042, Lab. Analyse Numerique, U.P. et M. Curie, Paris). [5] Glaser, P.E. (1968) Power from the sun: its future, Science, 162, pp. 857-86. [6] Golub, G.H. & Van Loan, C.F. (1983) Matrix Computations (North Oxford Academic, Oxford). [7] Guyan, R.J. (1965) Reduction of stiffness and mass matrices, AIAA Journal, 3, p. 380. [8] O'Neill, G.K. (1978) The High Frontier (Bantam Books, New York). [9] Serre, J.P. (1978) Representations lineaires des groupes finis (3rd ed., Hermann, Paris). [10] Stiefel, E. & FAssler, A. (1979) Gruppentheoretische Methoden und ihre Anwen- dung (Teubner, Stuttgart). [11] Weyl, H. (1952) Symmetry (Princeton University Press, Princeton, NJ). [12] Wigner, E.P. (1931) Gruppen Theorie und Ihre Anivendung auf die Quanten Mechanik der Atomspektren (Friedr. Vieweg; English translation, Academic Press, 1959). [13] Williams, F.W. (1976) A warning on the use of symmetry in classical eigenvalue analysis, Int. J. Num. Meth. Engng., 9, pp. 379-83.

RkJQdWJsaXNoZXIy MTU5NjU0Mg==