Space Solar Power Review Vol 7 Nums 3 & 4 1988

growth. Proc, of the First International Symposium on Silicon Molecular Beam Epitaxy (The Electrochemical Society, Pennington, NJ). [35] Kulkarni, S.B. (1984) Epitaxial silicon-material characterization, in: ibid. [36] Chu, T.L., Chu, S.S., Kelm, R.W. & Wakefield, G.W,. (1978) Solar cells from zone-refined metallurgical silicon, J. Electrochem. Soc., 125, 595. [37] Surek, T. (1980) The growth of silicon sheets and films for potovoltaic applications, Extended Abstracts 80-1 (The Electrochemical Society, Pennington, NJ), 800. [38] Belquet, C. (1984) Silicon ribbon growth by the RAD process, Extended Abstracts 84-3 (The Electrochemical Society, Pennington, NJ), 471. [39] Ota, Y. (1984) Vacuum evaporation system for depositing thick polycrystalline silicon, J. Vac. Sci. Technol., 2, 320. [40] Chu, T.L., Mollenkopf, H.C. & Chu, S.S. (1975) Polycrystalline silicon on coated steel substrates for solar cells, J. Electrochem. Soc., 122, 1681. [41] Brown, R.R. (1963) Proton accelerator bombardment for simulating space radiation damage to transistors and diodes, Space Radiation Effects (ASTM, Atlantic City, NJ), pp. 51. [42] Mayer, J.W., Eriksson, L. & Davies, J.A. (1970) Ion Implantation in Semiconductors, (Academic Press, NY). [43] Hall, R.N. & Dunlap, W.C. (1950) P-N junctions prepared by impurity diffusion, Phys. Rev., 467. [44] Wilson, R.G. (1967) Ion Implantation Sources, Colloque International sur Les Applications des Faisseaux loniques a la Technologies des Semiconductuers, pp. 105. [45] Stephens, K.G. (1984) An introduction to ion sources, in: Ziegler, J.F. (ed.) Ion Implantation Science and Technology, (Academic Press, NY), pp. 375. [46] Sacher, R., Stengl, G., Wolf, P. & Kaltna, R. (1976) Novel microfabrication processes without lithography using an ion-projection system, in: Chernow, F., Borders, J.A. & Brice, D.K. (eds) Ion Implantation in Semiconductors (Plenum Press, NY), pp. 563. [47] Kato, T., Morimoto, H., Saitoh, K. & Nakata, H. (1985) Submicron pattern fabrication by focused ion beam, J. Vac. Sci Technol., 1, 50. [48] Maissel, L.I. & Glang, R. (eds.), (1970) Handbook of Thin Film Technology (McGraw-Hill Book Co., NY). [49] Hass, G. (1950) Preparation, structure, and applications of thin films of silicon monoxide and titanium dioxide, J. Amer. Ceramic Soc., 33, 353. [50] Kingery, W.D., Bowen, H.K. & Uhlmann, D.R. (1976) Introduction to Ceramics (John Wiley & Sons, NY). [51] Hall, F.P. (1930) The influence of chemical composition on the physical properties of glazes, J. Amer. Ceramic Soc., 13, 182. [52] Gardner, D.S., Michalka, T.L., Saraswat, K.C., Barbee, T.W., Mcvittie, J.P. & Meindl, J.D. (1985) Layered and homogeneous films of aluminum and aluminum/silicon with titanium and tungsten for multilevel interconnects, IEEE Trans. Electron Devices ED-32, 174. [53] Pizzini, S., Bigoni, L., Beghi, M. & Chemelli, C. (1986) On the effect of impurities on the photovoltaic behavior of solar grade silicon, J. Electrochem Soc., 133, 2363. [54] Ohanian, M. (1970) Bonding techniques for microelectronics, in: Longo, T.A. (ed.) Integrated Circuit Technology, (Boston Technical Publishers, Inc., Cambridge, Ma.). [55] Ruggiero, E.M. (1968) Aluminum bonding for high-power IC's, in: Sideris, G. (ed.) Microelectronic Packaging, (McGraw-Hill Book Co., NY), pp. 240.

RkJQdWJsaXNoZXIy MTU5NjU0Mg==