Space Solar Power Review. Vol 8 Nums 1&2 1989

Cover 1
Table of Contents 3
1-1. Photovoltaic Space Power History and Perspective by EL Ralph 5
Summary 5
Background and History 5
Design Criteria 7
Solar Array Technology 8
Electrochemical Storage Technology 10
Summary 11
1-2. Large Solar Array Design by Turner and Debrock 13
Summary and Introduction 13
Basic Design Concept for Large Area Solar Arrays 13
Concept Evolution and Hardware Development 15
Current Space Station Freedom Design 20
Solar Array Manufacturing 21
Conclusion 23
Acknowledgement 24
1-5. Gallium Arsenide Technologies in Photovoltaic Conversion by Iles, Yeh & Ho 25
Summary 25
Introduction 25
Milestones in Technology Development 25
Advances in the 1970s 25
Air Force MANTECH Contract (‘High Efficiency GaAs Cells') 26
Parallel Production Efforts on GaAs Cells 26
Increased Efficiency GaAs Cells 26
Air Force Program (‘Rugged GaAs Solar Cells') 26
Interim Re-evaluation of GaAs/Ge Cells 27
Air Force MANTECH Program (‘Rugged, Thin GaAs Solar Cells') 29
Production of GaAs/Ge Cells 29
Current Trends 30
Conclusions 31
1-8. Advances in Thin-film Solar Cells for Lightweight Space Photovoltaic Power by Landis, Bailey and Flood 33
Summary 33
1. Introduction 33
2. Survey of the Current State of the Art 34
Current Generation Technology 34
Next Generation Technology 34
3. Thin-film Solar Cells 35
CdS/Cu2S 38
Copper Indium Selenide 38
Other I-III- VI2 Compounds 39
Cadmium Telluride 40
Amorphous Silicon 40
Thin Poly crystalline Silicon 41
4. Radiation Tolerance of Thin-film Solar Cells 41
5. Thin-film Cascades 42
Introduction 42
Experimental Results 44
Future 46
6. Applications 47
System Applications and Missions 48
7.Conclusions 49
Acknowledgements 50
Referencs 50
1-9. High Voltage Solar Array Interacting with Ionospheric Plasma by Kuninaka, Nozaki and Kuriki 53
Summary 53
Nomenclature 53
1. Introduction 54
2. Similarity Law 55
3. Experimental Simulation 57
Vacuum System and Plasma Source 57
Solar Array Models 58
Drag Measurement 58
Observation by Video Camera 59
Emissive Probe 59
5. Experimental Results 59
Characteristics of Ion Current 59
Characteristics of Ion Drag 61
Measurement of Ion Sheath 62
Observation on Model Surface 63
6. Discussion 63
Similarity Law 63
Estimation for 2D/HV Experiment 64
Potential Distribution 65
Luminosity on Insulator and Discharge 66
7.Concluding Remarks 70
References 70
2-7. Space Nuclear Power Systems for Extraterrestrial Basing by Lance and Chi 71
Summary 71
Lunar Base Power System Considerations 71
Lunar Exploration Systems for Apollo (LESA) 71
Comparison With Recent Lunar Base Studies 72
Solar Versus Nuclear Energy 72
Effect of Variables on Nuclear Power Systems 75
Effect of Variables on Logistic Burden 76
Recent Developments in NDR Nuclear System Design 81
Conclusions 83
Acknowledgements 83
References 83
3-2. Space Power Thermal Energy Storage: Planned Experiments for Phase Change Material Tests in Microgravity by Weingartner, Blumberg and Lindner 85
Summary 85
Introduction 85
Technical Problems and Relevance of Microgravity 86
PCM/Void Distribution 87
Gravity Independent Convection 89
Phase Change Convection. 90
Wetting and Spreading Properties 90
Crystal Growth 90
Lack of Sedimentation 90
Drop Tower Experiments 91
Background 91
Experiment Description 92
Expected Results 93
Ballistic Flight Experiment 94
Background 94
Experiment Description 95
Expected Results 95
Spacelab Experiment 95
Background 95
Experiment Description 95
Expected Results 96
Comparison and Summary 97
Alternatives 97
Cost and Profit 97
Conclusions 98
References 98
4-1. Solar Dynamic Power for Space Station Freedom by Labus, Secunde & Lovely 99
Summary 99
Summary of SD Power Module 99
Introduction 100
The SD Power Module 101
Performance Requirements 101
SD Principles of Operation 102
Description of SD Power Module and Its Components 103
Concentrator 104
Receiver 106
Power Conversion Unit 107
Heat Rejection Assembly 109
Electrical Equipment Assembly 110
Beta Gimbal 111
Interface Structure 111
Technology Base 111
On-orbit Assembly 112
Concluding Remarks 114
Acknowledgements 116
References 116
5-3. NERVA-Derivative Reactor Technology— A National Asset for Diverse Space Power Applications by Weitt, Chi and Livingston 117
Introduction 117
Description of the NDR 117
The Fuel Element 118
The Support Element 119
Redundant, Diverse, Engineered Safety Features 120
Redundant, Inherent Passive Nuclear Safety Capabilities 120
Diverse Space Power Applications 121
Burst Power 121
Bimodal Power Systems 121
Steady State Power 122
Direct Thermal Propulsion 122
Dual Mode 122
Ground-based Testing 122
Development Testing 123
Qualification Testing 123
Acceptance Tests 125
Conclusions 126
Acknowledgement 126
References 126
5-4. The Future of Closed Brayton Cycle Space Power Systems by Harper, Pietsch & Baggenstoss 127
Introduction 127
Past 127
Present 131
Future 135
References 138
5-7. Free-piston Stirling Technology for Space Power by Slaby 139
Summary 139
SPDE Summary 139
Introduction 139
Need for Space Power 140
Advanced Stirling Technology 141
Completion of SPDE Testing 142
Supporting Research and Technology 146
SSE Engine 146
Loss Understanding 148
Concluding Remarks 149
References 149
6-5. Considerations of Power Conversion Techniques in Future Space Applications by Jain, Bottrill and Tanju 151
Summary 151
1 Introduction 151
2 Elements of Future Spacecraft Power Systems 152
2.1 Efficiency 153
2.2 Mass 154
3 DC/AC Inverter Systems 154
3.1 Design Driving Factors 154
3.2 Control Methods 155
3.3 DC/AC Resonant Inverter Topologies 158
3.4 A Discussion on DC/AC Resonant Inverter Topologies 165
3.4.1 Parallel-resonant Inverter 165
3.4.2 Series-Parallel Resonant Inverter 166
3.4.3 Hybrid Resonant Inverter 166
4 DC/DC Converter Systems 167
4.1 Design Driving Factors 167
4.2 Control Techniques 168
4.2.1 Variable Frequency Control 168
4.2.2 Pulse Width Modulation Control 168
4.3 DC/DC Resonant Mode Converter Topologies 168
4.3.1 Series-resonant Converter Topology 169
4.3.2 Parallel-resonant Converter Topology 170
4.3.3 Series-Parallel Resonant Converter Topology 171
4.4 A Discussion on DC/DC Resonant Converter Topologies 172
4.4.1 Series-resonant Converter 172
4.4.2 Parallel-resonant Converter 173
4.4.3 Series-Parallel Resonant Converter. 173
5 AC/DC Converters 173
5.1 A New Class of AC/DC Converter 176
5.1.1 Type-1 Converter 176
5.1.2 Type-2 Converter 176
6 Conclusions 176
DC/AC Inverters 177
DC/DC Converters 178
AC/DC Converter 178
Acknowledgements 178
References 179
7-4. Central-station Electric Power for Spacecraft by Grey and Dwschamps 181
Summary 181
Space Power Generation 181
Energy Sources 181
Power Conversion 183
Radiators 184
Power Conditioning and Energy Storage 185
Power Conditioning 185
Energy Storage 185
Power Transmission in Space 186
Tethers 187
Microwaves 187
Submillimeter Waves 189
Lasers 189
System Aspects 190
Orbital Constraints 191
Type of Demand. 192
User Spacecraft Constraints 193
Schedule. 193
Costs. 196
References 197
8-4. Optimization of Lanthanum Hexaboride Electrodes for Maximum Thermionic Power Generation by Ramalingam & Morgan 201
Summary 201
Introduction 202
Description of Apparatus 203
Diminiode Construction 203
Experimental Setup 205
Testing Procedure 207
Results and Discussions 208
Cesium Reservoir Temperature Optimization 208
Empirical Relationship Between Power Density and Output Voltage for Cesium Reservoir Temperature Optimization 210
Collector Temperature Optimization 213
Emitter Temperature Optimization 214
Second Stage Optimization 216
Conclusions 217
Acknowledgements 218
References 218
8-5. Reliability and Single Point Failure Design Considerations in Thermionic Space Nuclear Power Systems by Knnel, Perry and Donovan 221
Introduction 221
Discussion 222
Conclusions 225
References 225
8-7. Ultrahigh Temperature Vapor Reactor and Magneto Conversion for Multi-megawattSpace Power Generation by Diaz, Anghaie, Dugan and Maya 227
1.0 Introduction 227
2.0 Ultrahigh Temperature Vapor Reactor-MHD Power Plants: Technical Features 228
2.1 Reactor Outlet Temperature 229
2.2 Energy Conversion 230
2.3 Radiator 231
2.4 Fuel and Working Fluid 232
2.5 Ultrahigh Temperature Magneto Energy Conversion 235
3.0 Conclusions and Future Direction 236
Acknowledgements 237
8-8. A High Specific Power Aneutronic Space Reactor by Norwood, Nering, Maglich and Powell 239
Summary 239
1. Introduction 239
2. The Migma Concept 240
3. Energy Balance in a Migma Reactor 242
4. Migma System Mass Estimates 245
5. The Exyder Concept 248
6.Conclusions 257
References 257
Back Cover Contents 260

RkJQdWJsaXNoZXIy MTU5NjU0Mg==