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Background

Over 60 years ago, H. B. G. Casimir and D. Polder [1, 2]
explained the retarded van der Waals force in terms of the
zero-point energy of a quantized field.

Regarding the pressure on moving mirrors due to the dynamic
Casimir effect, Neto and colleagues, [3-7], took a perturbative
approach on the assumption that the mirror motion Is << than
the wavelengths of interest. (causality issues?)

Maclay and Forward, [8], used this work to investigate the
Dynamic Casimir effect as a propulsive mechanism.

— Due to the high frequencies of mirror motion needed, they concluded
that owing to the limited strength of materials, the maximum
amplitudes must be at the nanometer scale.

Recent progress (including other work presented at this
workshop!) has provided experimental support

This presentation describes an idea to attain large amplitudes,
and develops analysis to support manufacture of a test item.



First Order Perturbation

Very small motion, no wavelength dependence
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Now consider the impulse response obtained via the inverse transform of X (@) : x(7) =% f X (w)e"

For t<0, must take the contour in the lower half plane:
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We require that x(z < 0) vanish, for causality.

Hence there must be no poles in the lower
half plane.




A moving “mirror” is a front of reflectivity — Mechanical motion
unnecessary!

The Casimir effect is due to the motion of the boundary conditions constraining the

free field.

The advent of transparent electrochromic semiconductors used for thin film
applications, or Chiral Nematic Liquid Crystals [9-14] suggests the possibility of
achieving large motions of reflective surfaces with no mechanically moving parts.

This paper proposes the use of an epitaxial assembly of switchable laminae. TO
evaluate the forces, we must consider large motion

An objective is to formulate specs for manufacture of a test item
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Voltage
Reflective Lamina input

Without voltage input, a lamina is a dielectric
With input, the lamina becomes a conductor (or vice-versa)
Inputs can be switched at high speed



Progression of reflectivity as the laminas are successively pulsed.

The blue-shaded boundary indicates the continuous motion of the front having a particular value of
reflectance.
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Paddle-Wheel Motion

g(t) monotonically increasing, g(0)=0
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Transflection Characteristics*
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Assume the reflectivity coefficient is given by:

R(k e[k .k, ])={0, or1

k is the wavenumber and [k, k, ] is the region where switching is possible

*INVESTIGATION OF LIQUID CRYSTAL SWITCHABLE
MIRROR OPTICAL CHARACTERISTICS FOR SOLAR ENERGY
P. Lemarchand; J.Doran; B.Norton

School of Physics, Dublin Energy Lab, Focas Institute, Dublin Institute
of Technology, Dublin, Sep 15, 2017.



Dynamic Casimir forces due to reflective boundary conditions
undergoing large motions - Formulation

e Use the Heisenberg picture: The mitial state 1s fixed (at zero
temp, 1n the vacuum state) and the operators evolve 1n time.
The Heisenberg operator equations-of-motion are, 1n this case,
Maxwell’s equations for the field operators.

e Use the continuous Fock space representation with
commutation relations:



Dynamic Casimir forces due to reflective boundary conditions
undergoing large motions - Formulation

e In the continuous Fock basis, at the starting time, the fields are given by:

27[) Zj [ s)e(k,s)e' —h.c.]d3k
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e Then determine the evolution of the operators:

é(k,s)(\/E, or Yk )(k, s)exp (i (kex —kr))
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Mode function before 'turn-on"
a(k,s) = annihilation operator

¢(k,s) = polarization vector
s =1,2: polarization states



The Situation Considered
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Dynamic Casimir forces due to reflective boundary conditions
undergoing large motions — Formulation

e Assume (1) the total amplitude of motion is much larger than a wavelength,

(2) during one period the change in the surface velocity is < c. Hence, the
field operators evolve past 7 = ct = 0 according to:

T)é(k, S, 7 = O) — h.C.]d3k

B(r.z ZZI

D, . (r, r) = transverse vector potential satisfying the wave equation and the

Vx(I) r,7)a(k,s,7=0)+hc.)|d%k
chksgo[ o (ri7)alk s, =0) )]

boundary conditions of the electric, or magnetic field and the initial condition:
@, (r,z=0)=g(k, S)[ei(m_“)]

e @, (r,7)is an analytic signal. .. the frequency, kc, is positive.

=0

o chk,S (r, z') represents the slowly varying evolution of the frequency (derivative
of the eikonal) at (r,z > 0).



Dynamic Casimir forces due to reflective boundary conditions
undergoing large motions - Formulation

e Integrate the Lorentz force operator per unit volume over the volume (below), apply the
divergence theoremand letR —> o and 6 — 0

v

e Then the force on the field, is ....
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Dynamic Casimir forces due to reflective boundary conditions

undergoing large motions - Formulation

Fo (0) =60 [,d2 [ &m,, ds,, — = [ Sar’

dr
VR,5 VR 5

(Q)ij = Maxwell stress operator
- 5[ (BE, ~16,E7)+* (BB, —16,8)]

S = Symmetrized Poynting vector operator
1

_ L E(r,0)xB(r.,r)-B(r.r)<E(r,7)]

214,
n, == unitnormal to both surfaces of the reflective

lamina

13



Averaging over the initial state - Example
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Dynamic Casimir forces due to reflective boundary conditions
undergoing large motions - Formulation

e By symmetry, there is only a z-component of force.
e Since Z < +/A — No x or y dependence of (F,)

e Take the quantum average (w.r.t. the initial state) and obtain the average force
on the reflective surface, (F,):
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d (7.
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e Evaluate the average force in terms of ®, _ (r,t):
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e All terms have the factor IR(k)k3dk, k =|K| 15



General Character of the Mode Functions




Average Casimir Force: Dimensional Analysis

e Suppose 3 a motion, bounded by Z and
T =T/c, that produces a (F ) £ 0.

What i |s I dt - aside

from a dependence upon ;( (t/T ) / Z?

¢ Without h there is no Casimir effect. Also h is the only factor that has units of mass
(f.); = h x(?)
kg—m  kg-m? 1
s* —m’ S m°® —s

kLJ - -, =
e Every term of F, (t)/A has the factor J'k dk R(k)k®,k = waveno.of initial |vac)mode

(f). = h «x (jkkl“dkR(k)kg)x (?)

kg—m kg -m? 1 m
S

s —m? S m*

e The only velocity scale is Z/T =cZ /T , therefore:

(f,). = hc(f:“dkR(k)k?’)%x(functionalof;((r/T),re[O,T))
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A 1-D Approximation

e Define spherical coordinates in k-space as above. Then:

[akR(K)[.]= . dg[ " sinode[ dkR(k)k?[..] =2z["sin6de|; dkr (k

e Guess that the(Fz) integrands have the main angular dependence cos(6)
e Assume that the dominant wave vectors have 6 <<1

_ys

@, (r,7)=0,(r,7)e(k,s)

(F,)/A= ;‘; de dkR(K)K? [dz Im[ @, (r,7) VO, (1,7)]
hic ) | n A2 10 -
g Far drszlllSI dk R(k)k {k\cpk(r,r)\ +E5®k(r,1)
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A 1-D Approximation — Solution of the scalar wave equation

0? 0?
'y -7 o
az ( ) 82'2 ak(Z’T)

CI)O(k(Z,TzO):eiO‘kZ
@, (2=0(7),7)=0a=+1
U
(exp( —7))—exp(ikS, (-z-7)),z<q(r)
0 T>Z>C](Z')
)

(exp(ik (-z-7))—exp(iks_(z-7)).z=q(r)
0,-r<z<q(r)

D, (Z,r) =<

¢ Note that since V (r) < 1 the following sequences are convergent:
S.(¢)=¢+2limg(&,.)

Skt :_g-TQ(fk_l), k>1
S =6
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A 1-D Approximation

* o, (rt)represents the evolution of the vector field operator from the initial
plane wave configuration in the vacuum state having wave vector k.

« For each half space, there is an incident wave with wave vector and a
reflected wave, also planar.

 Assume that (1) the total amplitude of motion is much larger than a
wavelength, (2) during the time required for the passage of one wavelength,
the relative change in the surface velocity is very small.

e As an example of one consequence of Assumption 1:
+1 5
= _kj_q(f)‘rd)ﬁ [1— cos(k(;(+ -2t-S, (z, )))}{8& (z.) _1}

ox,

+k [’ dy [1—Cos(k(;(_+21—8_ (;()))]{asa(z)—l}

a(r)- Va
e The cosine terms, resulting from the product of incident and reflected waves, have
twice the freuency of the incident waves and can be neglected.
e Note: If 1/k > Z, the cosine terms dominate and in the limit the force becomes 5

independent of k



A 1-D Approximation

e Neglecting all terms having incident x reflected products, we get the
eikonal approximation:

(F.(7))/ A= sij:z , IRk %q(f)/\(f)
1 (a0, 1 PP
o T )

e Obviously, if V = dq/dz = constant, the force vanishes
) A(r) depends only on the past history of V. — system is causal
1 1 Z
f ), =—(F = —xA(z=T
¢ < Z>T TA< Z(T)> 1672'3 (T )
(in agreement with the dimensional analysis)

ne( [ ok R(k)k3)_|_
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A Class of Accelerating Motions

e Consider surface motions that are powers of time:
q(z)= Z_(T/T)N ,7€[0,T]

e The velocity may be written:
V(r)=V(T)"",V =NZ/T

- so that V is the maximum speed during the maneuver.

e A(z =T) epitomizes the asymmetry of the field due to the surface motion.
This is given by:

A(r=T)= mi) m(l\lv_ml)“{(—l)m (Vﬁﬂj—(vﬁ—lﬂ

e The change in the normalized velocity in the time regiured by a wave with

wave number K to travel one wavelength is:

(i) ol
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A Class of Accelerating Motions
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3.5
| I
——
4 |
Ay 4 ll_
- :Hi
— 20 l/:ll
(|l
S 27
0 ..;I‘II
E Fi u'l.'. I|
E .':,-I.
1A
"1 =
7 . “"" .
° 0.2 0.4 ih =



The 3-D Problem — The Eikonal Approximation

V()
I b,
0 0 z

v

e Mixed incident x reflected terms neglected
e  (rt)= exp(i (k(7)er- kr))s(k(r) s)
Im| @, (r,t)x(Vx @, (r,t)) | =ke(r,0,7)

IZ{ Ue®, . (r,t)‘z} = EA us(Vx®, (r,t))‘2 =k ‘(u —(Xeu)uex(r, 6’,7)0‘
k(r,0,7)=k(r,0,7)/k

K
e Assumption 2 — relativistic reflection conditions may be used:
~2V +(1+V?)coso

~1-2Vcosf+V?

5 (r6.7) 1-V? R T VI IR VE
1+ 2V cos@+V? 2V +(1+V?)cosd

’0’~ ju— ju—
< (r.0.7) 1-V? S = NV cosa 1V
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The 3-D Problem — The Eikonal Approximation

(F, (z))/A=—C ( " dk R(k)k?’)i[q(r)jo”/zsin 0 F(r,@)d&}

272')2 dr

/N

F(.6) = jq@ 1; (cos@ -V (z +7)) _VZ(T)df (cos@+V (r-7))
| q(z) |-»0) 1-V? (7 +7) q(r) 1-V?(z-7)

d ~2V +(1+V?)cosd ¢ 2V +(1+V?)cosé

dz >~ 142V cosf+V2

e \When V = constant, the force vanishes
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The 3-D Problem — Lower and Upper Bounds

V=1-v,v<<l:
/AH F,)/A+0(v?)
d

(F, /A‘ (j dkR (k)k® jd—q(f)[\(r)
q r){jf dfl+V(17+f)_-.-qr(f)dfl—V(lr—f)}

A(r)=

V «1:
F,)/A = \ /A‘+O

— 2hC
‘F/A‘ UdkR k)d
. 1 L 1
q T){jf dTl+V(r+f)_L(f)drl—V(r—f)}

A(7)=
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Average Force for the Case of Periodic Scans

~+V

(b)

(a) Cyclic waveform of the reflective surface position; (b) Force on the momentum

exchange device.
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Average Force for the Case of Periodic Scans
R(k):{l,ke[kL,kU]

0, otherwise

d

(j:dkR(k)k:“):l?AlZ

K = [%(kj +k7 )2k, + kL)]ﬂ3

Ak =k, —k,
(F)/A), = ‘? Ak BA(T)
1 1
N=7k TV (e+7) -[or V(7 f)}
K =[4(k2 +k2)-3(k, +K)]
AK =k, —k,
B=2Z/(T+Z)e[0,1)




Example: Periodic Motion with Power-Law Waveforms

e Plasma frquency 10" Hz to 10*° Hz, k, =2x10" (1 =0.3um)
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Figure 6. Force per unit area as a function of the maximum waveform velocity, integer powers
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Example: Periodic Motion with Power-Law Waveforms

e Plasma frquency 10" Hz to 10*° Hz, k, =2x10" (1 =0.3um)

-
o
a%}

=4
o
o

-l
o
&

magnitude of average force per unit area (N!mQ}

-
o
o

0.2 0.4 0.6 0.8 1
Vbar

o

Figure 7. Force per unit area as a function of the maximum waveform velocity,
fractional powers
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Average force per unit area (N/m2)
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More Complex Operation: The Piston
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More Complex Operation: Resonator
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Concludlng Remarks( _

This paper re-examines the dynamic Casimir effect as a possible mechanlsm for
propulsion and ieeks large ampligude motion.

An epitaxial s f transparent/reflective laminae is proposed, wherein voItage.
switching creates large motion of a reflective surface without moving parts.

Since previous analysis of the propulsive effect was restricted to motions much
smaller than the wavelengths of importance, it is necessary to derive more general
expressions.

A class of accelerating, power-law,-motions was examined and the forces comptited.

For motions of the reflective surface that aré*much larger than the wavelength range
of significance, the approach taken here yields an eikonal apprOX|mat|on that may
simplify calculations in mere complicated cases.

Restnctlons

— Detailed dielectric function models not used — merely a wavelength range within which
switching is possible

— As for previous workers, the treatment is semi- quantum in that the epitaxial stack is modeled
" as a set of prescribed boundary conditions on the field operators.

— Use of two reflective surfaces (cavities) may enhance the effect by the
finesse of the cavity

Despite these restn&ons if reasonable switching frequentles are possible, the
propulsive forces may be quite significant.






