SPS Feasability Study SD76SA0239-2

Cover 1
Title Page 3
Foreword 5
Table of Contents 7
Section 1. Introduction 19
1.1 Study Approach 19
1.2 Study Grond Rules and Assumptions 20
1.3 Study Results and Conclusions 23
Section 2. Concept Definition 29
2.1 Satellite Configuration 29
2.1.1 Configuration Concepts 29
2.1.2 Satellite Structure 30
2.1.3 Microwave Antenna Structure 40
Conclusions 49
2.2 Power Conversion 50
2.2.1 SPS Efficiency 50
2.2.2 Solar Cells and Blanket 51
2.2.3 Solar Reflectors 62
2.2.4 Slip Ring and Brush Assembly 69
2.2.5 Power Distribution 71
2.3 Power Transmission 80
2.3.1 DC-RF Conversion Devices 83
2.3.2 DC-DC Efficiency 85
2.3.3 Array Design and Waveguide Structures 87
2.3.4Phase Control of MPTS Transmit Array 99
2.3.5 Conclusions 104
2.4 Attitude Control/Stationkeeping 106
2.4.1 Reference Control System 106
2.4.2 Stationkeeping 110
2.4.3 Attitude Control 118
2.4.4 Attitude Control System Alternatives 119
2.4.5 Alternative Vehicle Configurations 129
Section 3. Orbital Operations 133
3.1 Structuress Fabrication 133
3.2 SPS Construction Jig/Base Complex 136
3.3 Mirror and Solar-Cell Blanket Fabrication Factilities 140
3.4 Rotary-Joint, Slip-Ring Structure and Electrical Buildup 142
3.5 Microwave Antenna Trunnion Structure Buildup 144
3.6 Microwave Antenna Assembly 144
3.7 Installation of Electronic Elements and Phased-Array Antenna 150
3.8 Maintenance Facilities 154
3.9 Crew Sizes and Assembly Sequence 156
Section 4. Transportation 157
4.1 Earth Launch Vehicle 157
4.2 Orbital Transfer 162
4.2.1 Earth-LEO Logistics Scenario 163
4.2.2 Orbital Transfer Vehicle 163
4.2.3 LEO-GEO Logistics Scenario 163
4.3 Crew and Resupply Module 167
4.4 Payloads Integration 169
Section 5. Programmatics 173
5.1 Program Development 173
5.2 Economic Comparisons 175
5.2.1 System Cost Estimates 175
5.2.2 Program Cost Relationships 178
5.2.4 Capital Investments and User Costs 184
5.3 Technology Advancement 192
5.3.1 Fabrication/Assembly Technology 192
5.3.2 Structures Technology 195
5.3.3 Solar Cell Technology 198
5.3.4 Microwave Transmission Technology 201
5.3.5 Ionospheric Interaction Technology 202
5.3.6 Transportation Technology 202
5.3.7 Attitude Control and Stationkeeping 204
5.3.8 Reflector Technology 206
5.3.9 Conductor and Switch Technology 207
5.3.10 Rotary Joint Technology 209
Section 6. Special Studies 211
6.1 Nuclear Radiation at Geosynchronous Orbit 211
6.2 Electrical Spacecraft Charging at Geosynchronous Orbit 218
6.3 SPS Microwave Radiations 223
Illustrations 9
Figure 1.1-1. Study Overview 20
Figure 1.2-1. SPS Reference Configuration 22
Figure 1.3-1. Assembly Schedule - Nth Satellite 25
Figure 1.3-2. Air-Augmented HTO SSTO Concept 25
Figure 1.3-3. SPS Cargo Traffic Model Cumulative Cargo Masses to Orbit 26
Figure 1.3-4. Program Cost Relationships 27
Figure 1.3-5. System Cost By Fiscal Year 28
Figure 1.3-6. Future Study Recommendations 28
Figure 2.1-1. SPS Reference Configurationthe 30
Figure 2.1-2. Configuration Alternatives 31
Figure 2.1-3. SPS Frame Girder Generation Sequence 32
Figure 2.1-4. SPS Structural Geometry 33
Figure 2.1-5. SPS Satellite Structure 34
Figure 2.1-6. Girder Intersection Variations 34
Figure 2.1-7. Beam Interface Attachments 35
Figure 2.1-8. Akron and Macon Frame Structure 36
Figure 2.1-9. Akron and Macon Partially Assembled 37
Figure 2.1-10. Hindenberg Partially Assembled 38
Figure 2.1-11. Beam Element Section for SPS Array Structure 39
Figure 2.1-12. Built-up Beam Element Section for SPS Array Structure 39
Figure 2.1-13. Normalized Sections 40
Figure 2.1-14. Existing MPTS Concepts 41
Figure 2.1-15. Structural Concept for Compression Frame/Tension Web MW Antenna 42
Figure 2.1-16. Tension Web/Compression Frame Interface 42
Figure 2.1-17. Design Loads 44
Figure 2.1-18. Compression Frame Analysis TechniqueN 45
Figure 2.1-20. Tribeam Personnel Scooter 47
Figure 2.1-19. Compression Frame Girder Configuration 46
Figure 2.1-21. Catenary Rope Design 48
Figure 2.1-22. Tension Web Design 48
Figure 2.2-1. SPS Efficiency 50
Figure 2.2-2. Solar Cell Spectral Response Comparisons 53
Figure 2.2-3. Typical 1 x 1 cm GaAlAs/GaAs Heteroface Solar Cell 54
Figure 2.2-4. I-V Characteristics of 1 x 1 cm^2 Cell Measured on X-25 Solar Simulator 55
Figure 2.2-5. Solar Cell Efficiency Projections 55
Figure 2.2-6. Solar Cell Efficiency 56
Figure 2.2-7. Normalized Solar Cell Maximum Power Versus 1-Mev Electron Fluence 57
Figure 2.2-8. Fractional Degradation in Short Circuit CurrentVersus 1-Mev Equivalent Fluence 59
Figure 2.2-9. Experimental Radiation Effects Data 59
Figure 2.2-10. Temperature and Radiation Effects on Solar Array Performance 60
Figure 2.2-11. Efficiency Versus Thickness (Optimum Conditions) 61
Figure 2.2-12. Solar Cell Configurations 63
Figure 2.2-13. Solar Cell Blanket Configuration 63
Figure 2.2-14. Vee Trough-Solar Cell Reflector System - Concentration Ratio and Dimensions as Function of Reflector 65
Figure 2.2-15. Vee Channel Solar Array Concentration Ratio as Function of Misorientation Angle 66
Figure 2.2-16. Simplified Solar Array Configuration 67
Figure 2.2-17. Panel and Reflector Steady-State Temperatures 69
Figure 2.2-18. Microwave Antenna Trunnion Structure Buildup 70
Figure 2.2-19. Microwave Antenna Hexagonal Compression Frame 70
Figure 2.2-20. Shoe and Slip Ring Drive Assembly 71
Figure 2.2-21. Pickup Shoe 72
Figure 2.2-22. Solar Array Conductor Network (One Quadrant) 75
Figure 2.2-23. Schematic of Solar Array Conductors 75
Figure 2.2-24. System Voltage DropsFigure 76
Figure 2.2-25. Conductor Cross-Section Area for Each of 4 SPS Modules 76
Figure 2.2-26. Total Array Conductor Weight of SPS 77
Figure 2.2-27. Conductor Weight 77
Figure 2.2-28. Power Distribution Lateral Power Flow 78
Figure 2.3-1. Conceptual Diagram Showing Array and Amplifier Cost Trends Versus Amplifier Size 81
Figure 2.3-2. Simplified Diagram of Klystron Mod-Anode and Beam Power Requirements 82
Figure 2.3-3. PPM/PM High-Efficiency Klystron CW Amplifier 84
Figure 2.3-4. Microwave Energy Conversion Efficiency Chain 86
Figure 2.3-5. Efficiency Breakdown - Transmitting Antenna 86
Figure 2.3-6. Raytheon MW Subarray Concept 87
Figure 2.3-7. Typical TE10 SWR Array 88
Figure 2.3-8. Amplitron Modified Heat Sink 90
Figure 2.3-9. Experimental RCR 91
Figure 2.3-10. Radiating Slot Plane (H-Plane) 92
Figure 2.3-11. Freedline Plane (E-Plane) 92
Figure 2.3-12. Far-Field Radiation Pattern (10-Square-Meter Subarray) 93
Figure 2.3-13. 10-Square-Meter Element Factor 93
Figure 2.3-14. RCR Element Maintenance 94
Figure 2.3-15. Low-Density 10-Square-Meter Subarray 95
Figure 2.3-16. Low-Density 30-Meter-Square Subarray 96
Figure 2.3-17. High-Density 10-Meter-Square Subarray 97
Figure 2.3-18. High-Density 30-Meter-Square Subarray 98
Figure 2.3-19. MW Antenna Modular Sizes 100
Figure 2.3-20. Functional Block Diagram of Hytrodyne Phase Control Network 102
Figure 2.3-21. SPS MPTS Transmit Array Geometry Using Space Feed Reference System 103
Figure 2.3-22. Microwave Power Transmission System 105
Figure 2.4-1. 100-cm Ion Thruster Single Cathode Concept 107
Figure 2.4-2. Summary of Engine Requirements 107
Figure 2.4-3. Inert Gas and Tankage Mass 109
Figure 2.4-4. Propulsion Requirement for Orbit Inclination Control 113
Figure 2.4-5. Satellite Motion 115
Figure 2.4-6. Canted Vehicle 121
Figure 2.4-7. Cant Angle Comparisons 121
Figure 2.4-8. Momentum Storage Requirements 123
Figure 2.4-9. Capabilities of Existing Devices 123
Figure 2.4-10. Momentum Wheel Design Parameters 124
Figure 2.4-11. Large Momentum Wheel Conceptual Design 124
Figure 2.4-12. Anaysis of Problem 125
Figure 2.4-13. Periodic Motion 127
Figure 2.4-14. Required Initial Conditions 128
Figure 2.4-15. Stable Oscillatory Motion 128
Figure 2.4-16. Control Requirements 130
Figure 2.4-17. Configuration B Period Motion 131
Figure 3.1-1. SPS Equilateral Triangle Beam Verendeel Truss-Formed Sheet 134
Figure 3.1-2. SPS Structural Element Fabricator 135
Figure 3.1-3. Tri-Beam Fabrication 136
Figure 3.2-1. SPS Construction Jig/Base Complex 137
Figure 3.2-2. Central Construction Base 137
Figure 3.2-3. Intersection Facility - Perspective View 138
Figure 3.2-4. Intersection Facility - Orthogonal Views 139
Figure 3.3-1. SPS Construction Facilities Operational 140
Figure 3.3-2. Solar Cell and Reflector Film Deployment Facility Center Vertex Crawler 141
Figure 3.3-3. Film Deployment Concept Cable System 142
Figure 3.3-4. Tribeam Personnel Scooter 143
Figure 3.3-5. Reflector and Solar Cell Film Installation 143
Figure 3.4-1. Rotary Joint, Slip-Ring Structure, and Electrical Track 144
Figure 3.4-2. Rotary Joint, Slip-Ring Structure, and Electrical Track Buildup 145
Figure 3.5-1. Microwave Antenna Trunnion Structure 145
Figure 3.5-2. Microwave Antenna Trunnion Structure Buildup 146
Figure 3.5-3. Beam Interface Attachments 147
Figure 3.6-1. Microwave Antenna Hexagonal Compression Frame 148
Figure 3.6-2. Microwave Antenna Hexagonal Compression Frame Buildup 148
Figure 3.6-3. Nth Satellite Assembly - 52nd Day 149
Figure 3.6-4. Microwave Antenna RF Element Installation - Negative Lens Configuration 149
Figure 3.6-5. Assembly Schedule - Nth Satellite 150
Figure 3.7-1. Central 30-Meter by 30-Meter Subarray in-Line Assembly Facility 151
Figure 3.7-2. Microwave Antenna 30-Meter by 30-Meter Subarray Modular Assembly and Installation 152
Figure 3.7-3. Microwave Antenna Modular Sizes 152
Figure 3.7-4. Microwave Antenna Elements - 3-Membrane Negative Lens Concept 153
Figure 3.7-5. Microwave Antenna Modules and Catenary Structure Assembly Sequence 153
Figure 3.7-6. Antenna Subarray Deployment Sequence 154
Figure 3.8-1. Microwave Antenna Maintenance Concept 155
Figure 4.1-1. Activity Matrix Cost Characteristics 158
Figure 4.1-2. Candidate Earth Launch Vehicle Concepts 158
Figure 4.1-3. Cost per Flight Comparisons 160
Figure 4.1-4. Air-Augmented HTO-SSTO Concept 161
Figure 4.2-1. Common Stage LO2/LH2 Concept 164
Figure 4.2-2. OTV Flight Profile 165
Figure 4.2-3. OTV Performance Capabilities 166
Figure 4.3-1• Passenger Module Mass Trend (No. of Passengers Versus Mass/Man) 168
Figure 4.3-2. Crew and Resupply Module 168
Figure 4.4-1. Payload Integration 169
Figure 4.4-2. SPS Cargo Traffic Model - Cumulative Cargo Masses to Orbit 170
Figure 4.4-3. SPS Cargo Traffic Model Supply and Demand Rates 170
Figure 5.1-1. SPS Program Breakdown Structure 173
Figure 5.1-2. SPS Program Development 174
Figure 5,2-1. Program Cost Relationships 179
Figure 5.2-2. System Cost by Fiscal Year 183
Figure 5.2-3. Economic Comparison-Example SPS Cash Flow Based on Estimated Investment Costs and Funds Generated by 4 Satellite Installations (Case la) 191
Figure 6.1-1. Van Allen Belt Particle Dose 213
Figure 6.1-2. Solar Flare Particle Dose 213
Figure 6.1-3. Galactic (Cosmic) Particle Radiation Dose 214
Figure 6.1-4. Total Nuclear Radiation Dose 214
Figure 6.1-5. Low-Altitude Van Allen Orbit Doses 215
Figure 6.2-1. Local Time Dependence of Phenomena 219
Figure 6.2-2. Secondary Electron Effects 221
Figure 6.3-1. Structure of Earth's Ionosphere• 226
Figure 6.3-2. RF Frequency Interference 227
Tables 13
Table 1.2-1. SPS Concepts 21
Table 1.3-1. Satellite Weight Estimates 23
Table 2.1-1. Compression Frame Girder Design 47
Table 2.1-2. Compression Frame/Tension Web MPTS Weight Statement 49
Table 2.2-1. SPS Solar Cell and Blanket Preliminary Specification 52
Table 2.2-2. Solar Cell Description and Weight 61
Table 2.2-3. SPS Reflector Preliminary Specification 64
Table 2.2-4. Optical Properties 67
Table 2.2-5. Array Temperature as Function of Substrate Emissivity 68
Table 2.2-6. Slip Ring and Brush Block Preliminary Specification 73
Table 2.2-7. Power Distribution Weights 79
Table 2.2-8. Design Concepts for Conductor Weight Reduction 79
Table 2.3-1. High-Efficiency 50-kw Klystron CW Amplifier-Estimated Weights for Different Focusing Schemes 84
Table 2.3-2. Theoretical Power Saving of RCR Over Conventional Standing Wave TE10 Slotted Arrays 89
Table 2.3-3. Effects of Linear Phase Error 100
Table 2.4-1. Satellite Propellant Requirements 108
Table 2.4-2. Reference Attitude Control System Mass Summary 110
Table 2.4-3. Configuration A Advantages 130
Table 2.4-4. Configuration B Advantages 131
Table 4.1-1. SPS Program Applicability - Costs 161
Table 4.1-2. SPS Program Applicability - Cost Projections 162
Table 4.2-1. Dual Ascent/Return AV Budgets (LEO = 300-n.mi. ~ Equatorial) 166
Table 4.3-1. Crew Rotation/Resupply Logistics ProfileA 167
Table 5.2-1. SPS Cost Summary 176
Table 5.2-2. Preliminary Economic/Financial Findings Based on Capital Investmen 187
Table 5.2-3. Economic Comparisons - SPS Cash Flow Performance Summary (Based on Estimated Investment Costs and Funds Generated By Profit and Depreciation & Amortization) 188
Table 5.2-4. SPS Cash Flow Summary Based on Estimated Investment Costs and Funds Generated By Profit and Depreciation and Amortization 189
Table 5.2-5. SPS Cash Flow Summary Based on Estimated Investment Costs and Funds Generated By Profit and Depreciation and Amortization 190
Table 5.3-1. Technology Advancement Requirements 193
Table 6.1-1. Time Dependences of Nuclear Radiations 211
Table 6.1-2. Recommended Astronaut Dose Limits 216
Table 6.1-3. Allowable Times Due to Radiation Doses 216
Table 6.2-1. History of Charging-Induced Phenomena 219
Table 6.3-1* SPS Microwave Radiations 223
Abbreviations 15

RkJQdWJsaXNoZXIy MTU5NjU0Mg==